Metamath Proof Explorer


Definition df-qqh

Description: Define the canonical homomorphism from the rationals into any field. (Contributed by Mario Carneiro, 22-Oct-2017) (Revised by Thierry Arnoux, 23-Oct-2017)

Ref Expression
Assertion df-qqh ℚHom = r V ran x , y ℤRHom r -1 Unit r x y ℤRHom r x / r r ℤRHom r y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cqqh class ℚHom
1 vr setvar r
2 cvv class V
3 vx setvar x
4 cz class
5 vy setvar y
6 czrh class ℤRHom
7 1 cv setvar r
8 7 6 cfv class ℤRHom r
9 8 ccnv class ℤRHom r -1
10 cui class Unit
11 7 10 cfv class Unit r
12 9 11 cima class ℤRHom r -1 Unit r
13 3 cv setvar x
14 cdiv class ÷
15 5 cv setvar y
16 13 15 14 co class x y
17 13 8 cfv class ℤRHom r x
18 cdvr class / r
19 7 18 cfv class / r r
20 15 8 cfv class ℤRHom r y
21 17 20 19 co class ℤRHom r x / r r ℤRHom r y
22 16 21 cop class x y ℤRHom r x / r r ℤRHom r y
23 3 5 4 12 22 cmpo class x , y ℤRHom r -1 Unit r x y ℤRHom r x / r r ℤRHom r y
24 23 crn class ran x , y ℤRHom r -1 Unit r x y ℤRHom r x / r r ℤRHom r y
25 1 2 24 cmpt class r V ran x , y ℤRHom r -1 Unit r x y ℤRHom r x / r r ℤRHom r y
26 0 25 wceq wff ℚHom = r V ran x , y ℤRHom r -1 Unit r x y ℤRHom r x / r r ℤRHom r y