Metamath Proof Explorer


Theorem qqhval

Description: Value of the canonical homormorphism from the rational number to a field. (Contributed by Thierry Arnoux, 22-Oct-2017)

Ref Expression
Hypotheses qqhval.1 / = ( /r𝑅 )
qqhval.2 1 = ( 1r𝑅 )
qqhval.3 𝐿 = ( ℤRHom ‘ 𝑅 )
Assertion qqhval ( 𝑅 ∈ V → ( ℚHom ‘ 𝑅 ) = ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( 𝐿 “ ( Unit ‘ 𝑅 ) ) ↦ ⟨ ( 𝑥 / 𝑦 ) , ( ( 𝐿𝑥 ) / ( 𝐿𝑦 ) ) ⟩ ) )

Proof

Step Hyp Ref Expression
1 qqhval.1 / = ( /r𝑅 )
2 qqhval.2 1 = ( 1r𝑅 )
3 qqhval.3 𝐿 = ( ℤRHom ‘ 𝑅 )
4 eqidd ( 𝑓 = 𝑅 → ℤ = ℤ )
5 fveq2 ( 𝑓 = 𝑅 → ( ℤRHom ‘ 𝑓 ) = ( ℤRHom ‘ 𝑅 ) )
6 5 3 eqtr4di ( 𝑓 = 𝑅 → ( ℤRHom ‘ 𝑓 ) = 𝐿 )
7 6 cnveqd ( 𝑓 = 𝑅 ( ℤRHom ‘ 𝑓 ) = 𝐿 )
8 fveq2 ( 𝑓 = 𝑅 → ( Unit ‘ 𝑓 ) = ( Unit ‘ 𝑅 ) )
9 7 8 imaeq12d ( 𝑓 = 𝑅 → ( ( ℤRHom ‘ 𝑓 ) “ ( Unit ‘ 𝑓 ) ) = ( 𝐿 “ ( Unit ‘ 𝑅 ) ) )
10 fveq2 ( 𝑓 = 𝑅 → ( /r𝑓 ) = ( /r𝑅 ) )
11 10 1 eqtr4di ( 𝑓 = 𝑅 → ( /r𝑓 ) = / )
12 6 fveq1d ( 𝑓 = 𝑅 → ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑥 ) = ( 𝐿𝑥 ) )
13 6 fveq1d ( 𝑓 = 𝑅 → ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑦 ) = ( 𝐿𝑦 ) )
14 11 12 13 oveq123d ( 𝑓 = 𝑅 → ( ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑥 ) ( /r𝑓 ) ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝐿𝑥 ) / ( 𝐿𝑦 ) ) )
15 14 opeq2d ( 𝑓 = 𝑅 → ⟨ ( 𝑥 / 𝑦 ) , ( ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑥 ) ( /r𝑓 ) ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑦 ) ) ⟩ = ⟨ ( 𝑥 / 𝑦 ) , ( ( 𝐿𝑥 ) / ( 𝐿𝑦 ) ) ⟩ )
16 4 9 15 mpoeq123dv ( 𝑓 = 𝑅 → ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ( ℤRHom ‘ 𝑓 ) “ ( Unit ‘ 𝑓 ) ) ↦ ⟨ ( 𝑥 / 𝑦 ) , ( ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑥 ) ( /r𝑓 ) ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑦 ) ) ⟩ ) = ( 𝑥 ∈ ℤ , 𝑦 ∈ ( 𝐿 “ ( Unit ‘ 𝑅 ) ) ↦ ⟨ ( 𝑥 / 𝑦 ) , ( ( 𝐿𝑥 ) / ( 𝐿𝑦 ) ) ⟩ ) )
17 16 rneqd ( 𝑓 = 𝑅 → ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ( ℤRHom ‘ 𝑓 ) “ ( Unit ‘ 𝑓 ) ) ↦ ⟨ ( 𝑥 / 𝑦 ) , ( ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑥 ) ( /r𝑓 ) ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑦 ) ) ⟩ ) = ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( 𝐿 “ ( Unit ‘ 𝑅 ) ) ↦ ⟨ ( 𝑥 / 𝑦 ) , ( ( 𝐿𝑥 ) / ( 𝐿𝑦 ) ) ⟩ ) )
18 df-qqh ℚHom = ( 𝑓 ∈ V ↦ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ( ℤRHom ‘ 𝑓 ) “ ( Unit ‘ 𝑓 ) ) ↦ ⟨ ( 𝑥 / 𝑦 ) , ( ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑥 ) ( /r𝑓 ) ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑦 ) ) ⟩ ) )
19 zex ℤ ∈ V
20 3 fvexi 𝐿 ∈ V
21 20 cnvex 𝐿 ∈ V
22 imaexg ( 𝐿 ∈ V → ( 𝐿 “ ( Unit ‘ 𝑅 ) ) ∈ V )
23 21 22 ax-mp ( 𝐿 “ ( Unit ‘ 𝑅 ) ) ∈ V
24 19 23 mpoex ( 𝑥 ∈ ℤ , 𝑦 ∈ ( 𝐿 “ ( Unit ‘ 𝑅 ) ) ↦ ⟨ ( 𝑥 / 𝑦 ) , ( ( 𝐿𝑥 ) / ( 𝐿𝑦 ) ) ⟩ ) ∈ V
25 24 rnex ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( 𝐿 “ ( Unit ‘ 𝑅 ) ) ↦ ⟨ ( 𝑥 / 𝑦 ) , ( ( 𝐿𝑥 ) / ( 𝐿𝑦 ) ) ⟩ ) ∈ V
26 17 18 25 fvmpt ( 𝑅 ∈ V → ( ℚHom ‘ 𝑅 ) = ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( 𝐿 “ ( Unit ‘ 𝑅 ) ) ↦ ⟨ ( 𝑥 / 𝑦 ) , ( ( 𝐿𝑥 ) / ( 𝐿𝑦 ) ) ⟩ ) )