| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qqhval.1 |
⊢ / = ( /r ‘ 𝑅 ) |
| 2 |
|
qqhval.2 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 3 |
|
qqhval.3 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
| 4 |
|
eqidd |
⊢ ( 𝑓 = 𝑅 → ℤ = ℤ ) |
| 5 |
|
fveq2 |
⊢ ( 𝑓 = 𝑅 → ( ℤRHom ‘ 𝑓 ) = ( ℤRHom ‘ 𝑅 ) ) |
| 6 |
5 3
|
eqtr4di |
⊢ ( 𝑓 = 𝑅 → ( ℤRHom ‘ 𝑓 ) = 𝐿 ) |
| 7 |
6
|
cnveqd |
⊢ ( 𝑓 = 𝑅 → ◡ ( ℤRHom ‘ 𝑓 ) = ◡ 𝐿 ) |
| 8 |
|
fveq2 |
⊢ ( 𝑓 = 𝑅 → ( Unit ‘ 𝑓 ) = ( Unit ‘ 𝑅 ) ) |
| 9 |
7 8
|
imaeq12d |
⊢ ( 𝑓 = 𝑅 → ( ◡ ( ℤRHom ‘ 𝑓 ) “ ( Unit ‘ 𝑓 ) ) = ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑓 = 𝑅 → ( /r ‘ 𝑓 ) = ( /r ‘ 𝑅 ) ) |
| 11 |
10 1
|
eqtr4di |
⊢ ( 𝑓 = 𝑅 → ( /r ‘ 𝑓 ) = / ) |
| 12 |
6
|
fveq1d |
⊢ ( 𝑓 = 𝑅 → ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑥 ) = ( 𝐿 ‘ 𝑥 ) ) |
| 13 |
6
|
fveq1d |
⊢ ( 𝑓 = 𝑅 → ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑦 ) = ( 𝐿 ‘ 𝑦 ) ) |
| 14 |
11 12 13
|
oveq123d |
⊢ ( 𝑓 = 𝑅 → ( ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑥 ) ( /r ‘ 𝑓 ) ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑦 ) ) = ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ) |
| 15 |
14
|
opeq2d |
⊢ ( 𝑓 = 𝑅 → 〈 ( 𝑥 / 𝑦 ) , ( ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑥 ) ( /r ‘ 𝑓 ) ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑦 ) ) 〉 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) |
| 16 |
4 9 15
|
mpoeq123dv |
⊢ ( 𝑓 = 𝑅 → ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ ( ℤRHom ‘ 𝑓 ) “ ( Unit ‘ 𝑓 ) ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑥 ) ( /r ‘ 𝑓 ) ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑦 ) ) 〉 ) = ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) ) |
| 17 |
16
|
rneqd |
⊢ ( 𝑓 = 𝑅 → ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ ( ℤRHom ‘ 𝑓 ) “ ( Unit ‘ 𝑓 ) ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑥 ) ( /r ‘ 𝑓 ) ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑦 ) ) 〉 ) = ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) ) |
| 18 |
|
df-qqh |
⊢ ℚHom = ( 𝑓 ∈ V ↦ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ ( ℤRHom ‘ 𝑓 ) “ ( Unit ‘ 𝑓 ) ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑥 ) ( /r ‘ 𝑓 ) ( ( ℤRHom ‘ 𝑓 ) ‘ 𝑦 ) ) 〉 ) ) |
| 19 |
|
zex |
⊢ ℤ ∈ V |
| 20 |
3
|
fvexi |
⊢ 𝐿 ∈ V |
| 21 |
20
|
cnvex |
⊢ ◡ 𝐿 ∈ V |
| 22 |
|
imaexg |
⊢ ( ◡ 𝐿 ∈ V → ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) ∈ V ) |
| 23 |
21 22
|
ax-mp |
⊢ ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) ∈ V |
| 24 |
19 23
|
mpoex |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) ∈ V |
| 25 |
24
|
rnex |
⊢ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) ∈ V |
| 26 |
17 18 25
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( ℚHom ‘ 𝑅 ) = ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) ) |