| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qqhval2.0 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
qqhval2.1 |
⊢ / = ( /r ‘ 𝑅 ) |
| 3 |
|
qqhval2.2 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
| 4 |
|
elex |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ V ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → 𝑅 ∈ V ) |
| 6 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 7 |
2 6 3
|
qqhval |
⊢ ( 𝑅 ∈ V → ( ℚHom ‘ 𝑅 ) = ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) ) |
| 8 |
5 7
|
syl |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) = ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) ) |
| 9 |
|
eqid |
⊢ ℤ = ℤ |
| 10 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 11 |
1 3 10
|
zrhunitpreima |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) = ( ℤ ∖ { 0 } ) ) |
| 12 |
|
mpoeq12 |
⊢ ( ( ℤ = ℤ ∧ ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) = ( ℤ ∖ { 0 } ) ) → ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) = ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ℤ ∖ { 0 } ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) ) |
| 13 |
9 11 12
|
sylancr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) = ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ℤ ∖ { 0 } ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) ) |
| 14 |
13
|
rneqd |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ◡ 𝐿 “ ( Unit ‘ 𝑅 ) ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) = ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ℤ ∖ { 0 } ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) ) |
| 15 |
|
nfv |
⊢ Ⅎ 𝑒 ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) |
| 16 |
|
nfab1 |
⊢ Ⅎ 𝑒 { 𝑒 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ( ℤ ∖ { 0 } ) 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 } |
| 17 |
|
nfcv |
⊢ Ⅎ 𝑒 { 〈 𝑞 , 𝑠 〉 ∣ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) } |
| 18 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( ℤ ∖ { 0 } ) ) ) ∧ 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) → 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) |
| 19 |
|
zssq |
⊢ ℤ ⊆ ℚ |
| 20 |
|
simplrl |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( ℤ ∖ { 0 } ) ) ) ∧ 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) → 𝑥 ∈ ℤ ) |
| 21 |
19 20
|
sselid |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( ℤ ∖ { 0 } ) ) ) ∧ 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) → 𝑥 ∈ ℚ ) |
| 22 |
|
simplrr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( ℤ ∖ { 0 } ) ) ) ∧ 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) → 𝑦 ∈ ( ℤ ∖ { 0 } ) ) |
| 23 |
22
|
eldifad |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( ℤ ∖ { 0 } ) ) ) ∧ 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) → 𝑦 ∈ ℤ ) |
| 24 |
19 23
|
sselid |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( ℤ ∖ { 0 } ) ) ) ∧ 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) → 𝑦 ∈ ℚ ) |
| 25 |
22
|
eldifbd |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( ℤ ∖ { 0 } ) ) ) ∧ 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) → ¬ 𝑦 ∈ { 0 } ) |
| 26 |
|
velsn |
⊢ ( 𝑦 ∈ { 0 } ↔ 𝑦 = 0 ) |
| 27 |
26
|
necon3bbii |
⊢ ( ¬ 𝑦 ∈ { 0 } ↔ 𝑦 ≠ 0 ) |
| 28 |
25 27
|
sylib |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( ℤ ∖ { 0 } ) ) ) ∧ 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) → 𝑦 ≠ 0 ) |
| 29 |
|
qdivcl |
⊢ ( ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ∧ 𝑦 ≠ 0 ) → ( 𝑥 / 𝑦 ) ∈ ℚ ) |
| 30 |
21 24 28 29
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( ℤ ∖ { 0 } ) ) ) ∧ 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) → ( 𝑥 / 𝑦 ) ∈ ℚ ) |
| 31 |
|
simplll |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( ℤ ∖ { 0 } ) ) ) ∧ 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) → 𝑅 ∈ DivRing ) |
| 32 |
|
simpllr |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( ℤ ∖ { 0 } ) ) ) ∧ 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) → ( chr ‘ 𝑅 ) = 0 ) |
| 33 |
1 2 3
|
qqhval2lem |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) ) → ( ( 𝐿 ‘ ( numer ‘ ( 𝑥 / 𝑦 ) ) ) / ( 𝐿 ‘ ( denom ‘ ( 𝑥 / 𝑦 ) ) ) ) = ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ) |
| 34 |
33
|
eqcomd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) ) → ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) = ( ( 𝐿 ‘ ( numer ‘ ( 𝑥 / 𝑦 ) ) ) / ( 𝐿 ‘ ( denom ‘ ( 𝑥 / 𝑦 ) ) ) ) ) |
| 35 |
31 32 20 23 28 34
|
syl23anc |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( ℤ ∖ { 0 } ) ) ) ∧ 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) → ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) = ( ( 𝐿 ‘ ( numer ‘ ( 𝑥 / 𝑦 ) ) ) / ( 𝐿 ‘ ( denom ‘ ( 𝑥 / 𝑦 ) ) ) ) ) |
| 36 |
|
ovex |
⊢ ( 𝑥 / 𝑦 ) ∈ V |
| 37 |
|
ovex |
⊢ ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ∈ V |
| 38 |
|
opeq12 |
⊢ ( ( 𝑞 = ( 𝑥 / 𝑦 ) ∧ 𝑠 = ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ) → 〈 𝑞 , 𝑠 〉 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) |
| 39 |
38
|
eqeq2d |
⊢ ( ( 𝑞 = ( 𝑥 / 𝑦 ) ∧ 𝑠 = ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ) → ( 𝑒 = 〈 𝑞 , 𝑠 〉 ↔ 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) ) |
| 40 |
|
simpl |
⊢ ( ( 𝑞 = ( 𝑥 / 𝑦 ) ∧ 𝑠 = ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ) → 𝑞 = ( 𝑥 / 𝑦 ) ) |
| 41 |
40
|
eleq1d |
⊢ ( ( 𝑞 = ( 𝑥 / 𝑦 ) ∧ 𝑠 = ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ) → ( 𝑞 ∈ ℚ ↔ ( 𝑥 / 𝑦 ) ∈ ℚ ) ) |
| 42 |
|
simpr |
⊢ ( ( 𝑞 = ( 𝑥 / 𝑦 ) ∧ 𝑠 = ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ) → 𝑠 = ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ) |
| 43 |
40
|
fveq2d |
⊢ ( ( 𝑞 = ( 𝑥 / 𝑦 ) ∧ 𝑠 = ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ) → ( numer ‘ 𝑞 ) = ( numer ‘ ( 𝑥 / 𝑦 ) ) ) |
| 44 |
43
|
fveq2d |
⊢ ( ( 𝑞 = ( 𝑥 / 𝑦 ) ∧ 𝑠 = ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ) → ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) = ( 𝐿 ‘ ( numer ‘ ( 𝑥 / 𝑦 ) ) ) ) |
| 45 |
40
|
fveq2d |
⊢ ( ( 𝑞 = ( 𝑥 / 𝑦 ) ∧ 𝑠 = ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ) → ( denom ‘ 𝑞 ) = ( denom ‘ ( 𝑥 / 𝑦 ) ) ) |
| 46 |
45
|
fveq2d |
⊢ ( ( 𝑞 = ( 𝑥 / 𝑦 ) ∧ 𝑠 = ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ) → ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) = ( 𝐿 ‘ ( denom ‘ ( 𝑥 / 𝑦 ) ) ) ) |
| 47 |
44 46
|
oveq12d |
⊢ ( ( 𝑞 = ( 𝑥 / 𝑦 ) ∧ 𝑠 = ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ) → ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) = ( ( 𝐿 ‘ ( numer ‘ ( 𝑥 / 𝑦 ) ) ) / ( 𝐿 ‘ ( denom ‘ ( 𝑥 / 𝑦 ) ) ) ) ) |
| 48 |
42 47
|
eqeq12d |
⊢ ( ( 𝑞 = ( 𝑥 / 𝑦 ) ∧ 𝑠 = ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ) → ( 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ↔ ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) = ( ( 𝐿 ‘ ( numer ‘ ( 𝑥 / 𝑦 ) ) ) / ( 𝐿 ‘ ( denom ‘ ( 𝑥 / 𝑦 ) ) ) ) ) ) |
| 49 |
41 48
|
anbi12d |
⊢ ( ( 𝑞 = ( 𝑥 / 𝑦 ) ∧ 𝑠 = ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ) → ( ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ↔ ( ( 𝑥 / 𝑦 ) ∈ ℚ ∧ ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) = ( ( 𝐿 ‘ ( numer ‘ ( 𝑥 / 𝑦 ) ) ) / ( 𝐿 ‘ ( denom ‘ ( 𝑥 / 𝑦 ) ) ) ) ) ) ) |
| 50 |
39 49
|
anbi12d |
⊢ ( ( 𝑞 = ( 𝑥 / 𝑦 ) ∧ 𝑠 = ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) ) → ( ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ↔ ( 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ∧ ( ( 𝑥 / 𝑦 ) ∈ ℚ ∧ ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) = ( ( 𝐿 ‘ ( numer ‘ ( 𝑥 / 𝑦 ) ) ) / ( 𝐿 ‘ ( denom ‘ ( 𝑥 / 𝑦 ) ) ) ) ) ) ) ) |
| 51 |
36 37 50
|
spc2ev |
⊢ ( ( 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ∧ ( ( 𝑥 / 𝑦 ) ∈ ℚ ∧ ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) = ( ( 𝐿 ‘ ( numer ‘ ( 𝑥 / 𝑦 ) ) ) / ( 𝐿 ‘ ( denom ‘ ( 𝑥 / 𝑦 ) ) ) ) ) ) → ∃ 𝑞 ∃ 𝑠 ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) |
| 52 |
18 30 35 51
|
syl12anc |
⊢ ( ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( ℤ ∖ { 0 } ) ) ) ∧ 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) → ∃ 𝑞 ∃ 𝑠 ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) |
| 53 |
52
|
ex |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ( ℤ ∖ { 0 } ) ) ) → ( 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 → ∃ 𝑞 ∃ 𝑠 ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) ) |
| 54 |
53
|
rexlimdvva |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ( ℤ ∖ { 0 } ) 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 → ∃ 𝑞 ∃ 𝑠 ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) ) |
| 55 |
54
|
imp |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ( ℤ ∖ { 0 } ) 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) → ∃ 𝑞 ∃ 𝑠 ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) |
| 56 |
|
19.42vv |
⊢ ( ∃ 𝑞 ∃ 𝑠 ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) ↔ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ∃ 𝑞 ∃ 𝑠 ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) ) |
| 57 |
|
simprrl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) → 𝑞 ∈ ℚ ) |
| 58 |
|
qnumcl |
⊢ ( 𝑞 ∈ ℚ → ( numer ‘ 𝑞 ) ∈ ℤ ) |
| 59 |
57 58
|
syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) → ( numer ‘ 𝑞 ) ∈ ℤ ) |
| 60 |
|
qdencl |
⊢ ( 𝑞 ∈ ℚ → ( denom ‘ 𝑞 ) ∈ ℕ ) |
| 61 |
57 60
|
syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) → ( denom ‘ 𝑞 ) ∈ ℕ ) |
| 62 |
61
|
nnzd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) → ( denom ‘ 𝑞 ) ∈ ℤ ) |
| 63 |
|
nnne0 |
⊢ ( ( denom ‘ 𝑞 ) ∈ ℕ → ( denom ‘ 𝑞 ) ≠ 0 ) |
| 64 |
|
nelsn |
⊢ ( ( denom ‘ 𝑞 ) ≠ 0 → ¬ ( denom ‘ 𝑞 ) ∈ { 0 } ) |
| 65 |
61 63 64
|
3syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) → ¬ ( denom ‘ 𝑞 ) ∈ { 0 } ) |
| 66 |
62 65
|
eldifd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) → ( denom ‘ 𝑞 ) ∈ ( ℤ ∖ { 0 } ) ) |
| 67 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) → 𝑒 = 〈 𝑞 , 𝑠 〉 ) |
| 68 |
|
qeqnumdivden |
⊢ ( 𝑞 ∈ ℚ → 𝑞 = ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) ) |
| 69 |
57 68
|
syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) → 𝑞 = ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) ) |
| 70 |
|
simprrr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) → 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) |
| 71 |
69 70
|
opeq12d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) → 〈 𝑞 , 𝑠 〉 = 〈 ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) , ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) 〉 ) |
| 72 |
67 71
|
eqtrd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) → 𝑒 = 〈 ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) , ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) 〉 ) |
| 73 |
|
oveq1 |
⊢ ( 𝑥 = ( numer ‘ 𝑞 ) → ( 𝑥 / 𝑦 ) = ( ( numer ‘ 𝑞 ) / 𝑦 ) ) |
| 74 |
|
fveq2 |
⊢ ( 𝑥 = ( numer ‘ 𝑞 ) → ( 𝐿 ‘ 𝑥 ) = ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) ) |
| 75 |
74
|
oveq1d |
⊢ ( 𝑥 = ( numer ‘ 𝑞 ) → ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ 𝑦 ) ) ) |
| 76 |
73 75
|
opeq12d |
⊢ ( 𝑥 = ( numer ‘ 𝑞 ) → 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 = 〈 ( ( numer ‘ 𝑞 ) / 𝑦 ) , ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) |
| 77 |
76
|
eqeq2d |
⊢ ( 𝑥 = ( numer ‘ 𝑞 ) → ( 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ↔ 𝑒 = 〈 ( ( numer ‘ 𝑞 ) / 𝑦 ) , ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) ) |
| 78 |
|
oveq2 |
⊢ ( 𝑦 = ( denom ‘ 𝑞 ) → ( ( numer ‘ 𝑞 ) / 𝑦 ) = ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) ) |
| 79 |
|
fveq2 |
⊢ ( 𝑦 = ( denom ‘ 𝑞 ) → ( 𝐿 ‘ 𝑦 ) = ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) |
| 80 |
79
|
oveq2d |
⊢ ( 𝑦 = ( denom ‘ 𝑞 ) → ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ 𝑦 ) ) = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) |
| 81 |
78 80
|
opeq12d |
⊢ ( 𝑦 = ( denom ‘ 𝑞 ) → 〈 ( ( numer ‘ 𝑞 ) / 𝑦 ) , ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ 𝑦 ) ) 〉 = 〈 ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) , ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) 〉 ) |
| 82 |
81
|
eqeq2d |
⊢ ( 𝑦 = ( denom ‘ 𝑞 ) → ( 𝑒 = 〈 ( ( numer ‘ 𝑞 ) / 𝑦 ) , ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ↔ 𝑒 = 〈 ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) , ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) 〉 ) ) |
| 83 |
77 82
|
rspc2ev |
⊢ ( ( ( numer ‘ 𝑞 ) ∈ ℤ ∧ ( denom ‘ 𝑞 ) ∈ ( ℤ ∖ { 0 } ) ∧ 𝑒 = 〈 ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) , ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) 〉 ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ( ℤ ∖ { 0 } ) 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) |
| 84 |
59 66 72 83
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ( ℤ ∖ { 0 } ) 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) |
| 85 |
84
|
exlimivv |
⊢ ( ∃ 𝑞 ∃ 𝑠 ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ( ℤ ∖ { 0 } ) 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) |
| 86 |
56 85
|
sylbir |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ∃ 𝑞 ∃ 𝑠 ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ( ℤ ∖ { 0 } ) 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) |
| 87 |
55 86
|
impbida |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ( ℤ ∖ { 0 } ) 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ↔ ∃ 𝑞 ∃ 𝑠 ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) ) |
| 88 |
|
abid |
⊢ ( 𝑒 ∈ { 𝑒 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ( ℤ ∖ { 0 } ) 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 } ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ( ℤ ∖ { 0 } ) 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) |
| 89 |
|
elopab |
⊢ ( 𝑒 ∈ { 〈 𝑞 , 𝑠 〉 ∣ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) } ↔ ∃ 𝑞 ∃ 𝑠 ( 𝑒 = 〈 𝑞 , 𝑠 〉 ∧ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) ) |
| 90 |
87 88 89
|
3bitr4g |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( 𝑒 ∈ { 𝑒 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ( ℤ ∖ { 0 } ) 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 } ↔ 𝑒 ∈ { 〈 𝑞 , 𝑠 〉 ∣ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) } ) ) |
| 91 |
15 16 17 90
|
eqrd |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → { 𝑒 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ( ℤ ∖ { 0 } ) 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 } = { 〈 𝑞 , 𝑠 〉 ∣ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) } ) |
| 92 |
|
eqid |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ℤ ∖ { 0 } ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) = ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ℤ ∖ { 0 } ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) |
| 93 |
92
|
rnmpo |
⊢ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ℤ ∖ { 0 } ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) = { 𝑒 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ( ℤ ∖ { 0 } ) 𝑒 = 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 } |
| 94 |
|
df-mpt |
⊢ ( 𝑞 ∈ ℚ ↦ ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) = { 〈 𝑞 , 𝑠 〉 ∣ ( 𝑞 ∈ ℚ ∧ 𝑠 = ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) } |
| 95 |
91 93 94
|
3eqtr4g |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ( ℤ ∖ { 0 } ) ↦ 〈 ( 𝑥 / 𝑦 ) , ( ( 𝐿 ‘ 𝑥 ) / ( 𝐿 ‘ 𝑦 ) ) 〉 ) = ( 𝑞 ∈ ℚ ↦ ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) |
| 96 |
8 14 95
|
3eqtrd |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) = ( 𝑞 ∈ ℚ ↦ ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) |