| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zrhker.0 |
|- B = ( Base ` R ) |
| 2 |
|
zrhker.1 |
|- L = ( ZRHom ` R ) |
| 3 |
|
zrhker.2 |
|- .0. = ( 0g ` R ) |
| 4 |
|
simpll |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> R e. DivRing ) |
| 5 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
| 6 |
2
|
zrhrhm |
|- ( R e. Ring -> L e. ( ZZring RingHom R ) ) |
| 7 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 8 |
7 1
|
rhmf |
|- ( L e. ( ZZring RingHom R ) -> L : ZZ --> B ) |
| 9 |
|
ffn |
|- ( L : ZZ --> B -> L Fn ZZ ) |
| 10 |
6 8 9
|
3syl |
|- ( R e. Ring -> L Fn ZZ ) |
| 11 |
4 5 10
|
3syl |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> L Fn ZZ ) |
| 12 |
|
simprl |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> M e. ZZ ) |
| 13 |
|
elsng |
|- ( M e. ZZ -> ( M e. { 0 } <-> M = 0 ) ) |
| 14 |
13
|
necon3bbid |
|- ( M e. ZZ -> ( -. M e. { 0 } <-> M =/= 0 ) ) |
| 15 |
14
|
biimpar |
|- ( ( M e. ZZ /\ M =/= 0 ) -> -. M e. { 0 } ) |
| 16 |
15
|
adantl |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> -. M e. { 0 } ) |
| 17 |
12 16
|
eldifd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> M e. ( ZZ \ { 0 } ) ) |
| 18 |
1 2 3
|
zrhunitpreima |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( `' L " ( Unit ` R ) ) = ( ZZ \ { 0 } ) ) |
| 19 |
18
|
adantr |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> ( `' L " ( Unit ` R ) ) = ( ZZ \ { 0 } ) ) |
| 20 |
17 19
|
eleqtrrd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> M e. ( `' L " ( Unit ` R ) ) ) |
| 21 |
|
elpreima |
|- ( L Fn ZZ -> ( M e. ( `' L " ( Unit ` R ) ) <-> ( M e. ZZ /\ ( L ` M ) e. ( Unit ` R ) ) ) ) |
| 22 |
21
|
simplbda |
|- ( ( L Fn ZZ /\ M e. ( `' L " ( Unit ` R ) ) ) -> ( L ` M ) e. ( Unit ` R ) ) |
| 23 |
11 20 22
|
syl2anc |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> ( L ` M ) e. ( Unit ` R ) ) |