Step |
Hyp |
Ref |
Expression |
1 |
|
zrhker.0 |
|- B = ( Base ` R ) |
2 |
|
zrhker.1 |
|- L = ( ZRHom ` R ) |
3 |
|
zrhker.2 |
|- .0. = ( 0g ` R ) |
4 |
|
simpll |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> R e. DivRing ) |
5 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
6 |
2
|
zrhrhm |
|- ( R e. Ring -> L e. ( ZZring RingHom R ) ) |
7 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
8 |
7 1
|
rhmf |
|- ( L e. ( ZZring RingHom R ) -> L : ZZ --> B ) |
9 |
|
ffn |
|- ( L : ZZ --> B -> L Fn ZZ ) |
10 |
6 8 9
|
3syl |
|- ( R e. Ring -> L Fn ZZ ) |
11 |
4 5 10
|
3syl |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> L Fn ZZ ) |
12 |
|
simprl |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> M e. ZZ ) |
13 |
|
elsng |
|- ( M e. ZZ -> ( M e. { 0 } <-> M = 0 ) ) |
14 |
13
|
necon3bbid |
|- ( M e. ZZ -> ( -. M e. { 0 } <-> M =/= 0 ) ) |
15 |
14
|
biimpar |
|- ( ( M e. ZZ /\ M =/= 0 ) -> -. M e. { 0 } ) |
16 |
15
|
adantl |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> -. M e. { 0 } ) |
17 |
12 16
|
eldifd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> M e. ( ZZ \ { 0 } ) ) |
18 |
1 2 3
|
zrhunitpreima |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( `' L " ( Unit ` R ) ) = ( ZZ \ { 0 } ) ) |
19 |
18
|
adantr |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> ( `' L " ( Unit ` R ) ) = ( ZZ \ { 0 } ) ) |
20 |
17 19
|
eleqtrrd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> M e. ( `' L " ( Unit ` R ) ) ) |
21 |
|
elpreima |
|- ( L Fn ZZ -> ( M e. ( `' L " ( Unit ` R ) ) <-> ( M e. ZZ /\ ( L ` M ) e. ( Unit ` R ) ) ) ) |
22 |
21
|
simplbda |
|- ( ( L Fn ZZ /\ M e. ( `' L " ( Unit ` R ) ) ) -> ( L ` M ) e. ( Unit ` R ) ) |
23 |
11 20 22
|
syl2anc |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ ( M e. ZZ /\ M =/= 0 ) ) -> ( L ` M ) e. ( Unit ` R ) ) |