Metamath Proof Explorer


Theorem zrhchr

Description: The kernel of the homomorphism from the integers to a ring is injective if and only if the ring has characteristic 0 . (Contributed by Thierry Arnoux, 8-Nov-2017)

Ref Expression
Hypotheses zrhker.0 B = Base R
zrhker.1 L = ℤRHom R
zrhker.2 0 ˙ = 0 R
Assertion zrhchr R Ring chr R = 0 L : 1-1 B

Proof

Step Hyp Ref Expression
1 zrhker.0 B = Base R
2 zrhker.1 L = ℤRHom R
3 zrhker.2 0 ˙ = 0 R
4 eqid R = R
5 eqid 1 R = 1 R
6 2 4 5 zrhval2 R Ring L = x x R 1 R
7 f1eq1 L = x x R 1 R L : 1-1 B x x R 1 R : 1-1 B
8 6 7 syl R Ring L : 1-1 B x x R 1 R : 1-1 B
9 ringgrp R Ring R Grp
10 1 5 ringidcl R Ring 1 R B
11 eqid od R = od R
12 eqid x x R 1 R = x x R 1 R
13 1 11 4 12 odf1 R Grp 1 R B od R 1 R = 0 x x R 1 R : 1-1 B
14 9 10 13 syl2anc R Ring od R 1 R = 0 x x R 1 R : 1-1 B
15 eqid chr R = chr R
16 11 5 15 chrval od R 1 R = chr R
17 16 eqeq1i od R 1 R = 0 chr R = 0
18 17 a1i R Ring od R 1 R = 0 chr R = 0
19 8 14 18 3bitr2rd R Ring chr R = 0 L : 1-1 B