| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qqhval2.0 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
qqhval2.1 |
⊢ / = ( /r ‘ 𝑅 ) |
| 3 |
|
qqhval2.2 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
| 4 |
1 2 3
|
qqhval2 |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) = ( 𝑞 ∈ ℚ ↦ ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ) ) |
| 5 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → 𝑅 ∈ Ring ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → 𝑅 ∈ Ring ) |
| 8 |
3
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) ) |
| 9 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 10 |
9 1
|
rhmf |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → 𝐿 : ℤ ⟶ 𝐵 ) |
| 11 |
7 8 10
|
3syl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → 𝐿 : ℤ ⟶ 𝐵 ) |
| 12 |
|
qnumcl |
⊢ ( 𝑞 ∈ ℚ → ( numer ‘ 𝑞 ) ∈ ℤ ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ( numer ‘ 𝑞 ) ∈ ℤ ) |
| 14 |
11 13
|
ffvelcdmd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) ∈ 𝐵 ) |
| 15 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → 𝑅 ∈ DivRing ) |
| 16 |
|
qdencl |
⊢ ( 𝑞 ∈ ℚ → ( denom ‘ 𝑞 ) ∈ ℕ ) |
| 17 |
16
|
adantl |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ( denom ‘ 𝑞 ) ∈ ℕ ) |
| 18 |
17
|
nnzd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ( denom ‘ 𝑞 ) ∈ ℤ ) |
| 19 |
11 18
|
ffvelcdmd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ∈ 𝐵 ) |
| 20 |
17
|
nnne0d |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ( denom ‘ 𝑞 ) ≠ 0 ) |
| 21 |
20
|
neneqd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ¬ ( denom ‘ 𝑞 ) = 0 ) |
| 22 |
|
fvex |
⊢ ( denom ‘ 𝑞 ) ∈ V |
| 23 |
22
|
elsn |
⊢ ( ( denom ‘ 𝑞 ) ∈ { 0 } ↔ ( denom ‘ 𝑞 ) = 0 ) |
| 24 |
21 23
|
sylnibr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ¬ ( denom ‘ 𝑞 ) ∈ { 0 } ) |
| 25 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 26 |
1 3 25
|
zrhker |
⊢ ( 𝑅 ∈ Ring → ( ( chr ‘ 𝑅 ) = 0 ↔ ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) = { 0 } ) ) |
| 27 |
26
|
biimpa |
⊢ ( ( 𝑅 ∈ Ring ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) = { 0 } ) |
| 28 |
5 27
|
sylan |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) = { 0 } ) |
| 29 |
28
|
adantr |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) = { 0 } ) |
| 30 |
24 29
|
neleqtrrd |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ¬ ( denom ‘ 𝑞 ) ∈ ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) ) |
| 31 |
|
ffn |
⊢ ( 𝐿 : ℤ ⟶ 𝐵 → 𝐿 Fn ℤ ) |
| 32 |
8 10 31
|
3syl |
⊢ ( 𝑅 ∈ Ring → 𝐿 Fn ℤ ) |
| 33 |
|
elpreima |
⊢ ( 𝐿 Fn ℤ → ( ( denom ‘ 𝑞 ) ∈ ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) ↔ ( ( denom ‘ 𝑞 ) ∈ ℤ ∧ ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ∈ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 34 |
5 32 33
|
3syl |
⊢ ( 𝑅 ∈ DivRing → ( ( denom ‘ 𝑞 ) ∈ ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) ↔ ( ( denom ‘ 𝑞 ) ∈ ℤ ∧ ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ∈ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 35 |
34
|
biimpar |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( ( denom ‘ 𝑞 ) ∈ ℤ ∧ ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ∈ { ( 0g ‘ 𝑅 ) } ) ) → ( denom ‘ 𝑞 ) ∈ ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) ) |
| 36 |
35
|
expr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( denom ‘ 𝑞 ) ∈ ℤ ) → ( ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ∈ { ( 0g ‘ 𝑅 ) } → ( denom ‘ 𝑞 ) ∈ ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) ) ) |
| 37 |
36
|
con3dimp |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( denom ‘ 𝑞 ) ∈ ℤ ) ∧ ¬ ( denom ‘ 𝑞 ) ∈ ( ◡ 𝐿 “ { ( 0g ‘ 𝑅 ) } ) ) → ¬ ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ∈ { ( 0g ‘ 𝑅 ) } ) |
| 38 |
15 18 30 37
|
syl21anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ¬ ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ∈ { ( 0g ‘ 𝑅 ) } ) |
| 39 |
|
fvex |
⊢ ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ∈ V |
| 40 |
39
|
elsn |
⊢ ( ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ∈ { ( 0g ‘ 𝑅 ) } ↔ ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) = ( 0g ‘ 𝑅 ) ) |
| 41 |
38 40
|
sylnib |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ¬ ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) = ( 0g ‘ 𝑅 ) ) |
| 42 |
41
|
neqned |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ≠ ( 0g ‘ 𝑅 ) ) |
| 43 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 44 |
1 43 25
|
drngunit |
⊢ ( 𝑅 ∈ DivRing → ( ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ∈ ( Unit ‘ 𝑅 ) ↔ ( ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ∈ 𝐵 ∧ ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ≠ ( 0g ‘ 𝑅 ) ) ) ) |
| 45 |
44
|
biimpar |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ∈ 𝐵 ∧ ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ≠ ( 0g ‘ 𝑅 ) ) ) → ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 46 |
15 19 42 45
|
syl12anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 47 |
1 43 2
|
dvrcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) ∈ 𝐵 ∧ ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ∈ 𝐵 ) |
| 48 |
7 14 46 47
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ( ( 𝐿 ‘ ( numer ‘ 𝑞 ) ) / ( 𝐿 ‘ ( denom ‘ 𝑞 ) ) ) ∈ 𝐵 ) |
| 49 |
4 48
|
fmpt3d |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) : ℚ ⟶ 𝐵 ) |