| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qqhval2.0 |
|- B = ( Base ` R ) |
| 2 |
|
qqhval2.1 |
|- ./ = ( /r ` R ) |
| 3 |
|
qqhval2.2 |
|- L = ( ZRHom ` R ) |
| 4 |
1 2 3
|
qqhval2 |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) = ( q e. QQ |-> ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) ) ) |
| 5 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
| 6 |
5
|
adantr |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> R e. Ring ) |
| 7 |
6
|
adantr |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> R e. Ring ) |
| 8 |
3
|
zrhrhm |
|- ( R e. Ring -> L e. ( ZZring RingHom R ) ) |
| 9 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 10 |
9 1
|
rhmf |
|- ( L e. ( ZZring RingHom R ) -> L : ZZ --> B ) |
| 11 |
7 8 10
|
3syl |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> L : ZZ --> B ) |
| 12 |
|
qnumcl |
|- ( q e. QQ -> ( numer ` q ) e. ZZ ) |
| 13 |
12
|
adantl |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> ( numer ` q ) e. ZZ ) |
| 14 |
11 13
|
ffvelcdmd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> ( L ` ( numer ` q ) ) e. B ) |
| 15 |
|
simpll |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> R e. DivRing ) |
| 16 |
|
qdencl |
|- ( q e. QQ -> ( denom ` q ) e. NN ) |
| 17 |
16
|
adantl |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> ( denom ` q ) e. NN ) |
| 18 |
17
|
nnzd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> ( denom ` q ) e. ZZ ) |
| 19 |
11 18
|
ffvelcdmd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> ( L ` ( denom ` q ) ) e. B ) |
| 20 |
17
|
nnne0d |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> ( denom ` q ) =/= 0 ) |
| 21 |
20
|
neneqd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> -. ( denom ` q ) = 0 ) |
| 22 |
|
fvex |
|- ( denom ` q ) e. _V |
| 23 |
22
|
elsn |
|- ( ( denom ` q ) e. { 0 } <-> ( denom ` q ) = 0 ) |
| 24 |
21 23
|
sylnibr |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> -. ( denom ` q ) e. { 0 } ) |
| 25 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 26 |
1 3 25
|
zrhker |
|- ( R e. Ring -> ( ( chr ` R ) = 0 <-> ( `' L " { ( 0g ` R ) } ) = { 0 } ) ) |
| 27 |
26
|
biimpa |
|- ( ( R e. Ring /\ ( chr ` R ) = 0 ) -> ( `' L " { ( 0g ` R ) } ) = { 0 } ) |
| 28 |
5 27
|
sylan |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( `' L " { ( 0g ` R ) } ) = { 0 } ) |
| 29 |
28
|
adantr |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> ( `' L " { ( 0g ` R ) } ) = { 0 } ) |
| 30 |
24 29
|
neleqtrrd |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> -. ( denom ` q ) e. ( `' L " { ( 0g ` R ) } ) ) |
| 31 |
|
ffn |
|- ( L : ZZ --> B -> L Fn ZZ ) |
| 32 |
8 10 31
|
3syl |
|- ( R e. Ring -> L Fn ZZ ) |
| 33 |
|
elpreima |
|- ( L Fn ZZ -> ( ( denom ` q ) e. ( `' L " { ( 0g ` R ) } ) <-> ( ( denom ` q ) e. ZZ /\ ( L ` ( denom ` q ) ) e. { ( 0g ` R ) } ) ) ) |
| 34 |
5 32 33
|
3syl |
|- ( R e. DivRing -> ( ( denom ` q ) e. ( `' L " { ( 0g ` R ) } ) <-> ( ( denom ` q ) e. ZZ /\ ( L ` ( denom ` q ) ) e. { ( 0g ` R ) } ) ) ) |
| 35 |
34
|
biimpar |
|- ( ( R e. DivRing /\ ( ( denom ` q ) e. ZZ /\ ( L ` ( denom ` q ) ) e. { ( 0g ` R ) } ) ) -> ( denom ` q ) e. ( `' L " { ( 0g ` R ) } ) ) |
| 36 |
35
|
expr |
|- ( ( R e. DivRing /\ ( denom ` q ) e. ZZ ) -> ( ( L ` ( denom ` q ) ) e. { ( 0g ` R ) } -> ( denom ` q ) e. ( `' L " { ( 0g ` R ) } ) ) ) |
| 37 |
36
|
con3dimp |
|- ( ( ( R e. DivRing /\ ( denom ` q ) e. ZZ ) /\ -. ( denom ` q ) e. ( `' L " { ( 0g ` R ) } ) ) -> -. ( L ` ( denom ` q ) ) e. { ( 0g ` R ) } ) |
| 38 |
15 18 30 37
|
syl21anc |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> -. ( L ` ( denom ` q ) ) e. { ( 0g ` R ) } ) |
| 39 |
|
fvex |
|- ( L ` ( denom ` q ) ) e. _V |
| 40 |
39
|
elsn |
|- ( ( L ` ( denom ` q ) ) e. { ( 0g ` R ) } <-> ( L ` ( denom ` q ) ) = ( 0g ` R ) ) |
| 41 |
38 40
|
sylnib |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> -. ( L ` ( denom ` q ) ) = ( 0g ` R ) ) |
| 42 |
41
|
neqned |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> ( L ` ( denom ` q ) ) =/= ( 0g ` R ) ) |
| 43 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
| 44 |
1 43 25
|
drngunit |
|- ( R e. DivRing -> ( ( L ` ( denom ` q ) ) e. ( Unit ` R ) <-> ( ( L ` ( denom ` q ) ) e. B /\ ( L ` ( denom ` q ) ) =/= ( 0g ` R ) ) ) ) |
| 45 |
44
|
biimpar |
|- ( ( R e. DivRing /\ ( ( L ` ( denom ` q ) ) e. B /\ ( L ` ( denom ` q ) ) =/= ( 0g ` R ) ) ) -> ( L ` ( denom ` q ) ) e. ( Unit ` R ) ) |
| 46 |
15 19 42 45
|
syl12anc |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> ( L ` ( denom ` q ) ) e. ( Unit ` R ) ) |
| 47 |
1 43 2
|
dvrcl |
|- ( ( R e. Ring /\ ( L ` ( numer ` q ) ) e. B /\ ( L ` ( denom ` q ) ) e. ( Unit ` R ) ) -> ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) e. B ) |
| 48 |
7 14 46 47
|
syl3anc |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ q e. QQ ) -> ( ( L ` ( numer ` q ) ) ./ ( L ` ( denom ` q ) ) ) e. B ) |
| 49 |
4 48
|
fmpt3d |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) : QQ --> B ) |