Step |
Hyp |
Ref |
Expression |
1 |
|
qqhval2.0 |
|- B = ( Base ` R ) |
2 |
|
qqhval2.1 |
|- ./ = ( /r ` R ) |
3 |
|
qqhval2.2 |
|- L = ( ZRHom ` R ) |
4 |
|
zssq |
|- ZZ C_ QQ |
5 |
|
1z |
|- 1 e. ZZ |
6 |
4 5
|
sselii |
|- 1 e. QQ |
7 |
1 2 3
|
qqhvval |
|- ( ( ( R e. DivRing /\ ( chr ` R ) = 0 ) /\ 1 e. QQ ) -> ( ( QQHom ` R ) ` 1 ) = ( ( L ` ( numer ` 1 ) ) ./ ( L ` ( denom ` 1 ) ) ) ) |
8 |
6 7
|
mpan2 |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( ( QQHom ` R ) ` 1 ) = ( ( L ` ( numer ` 1 ) ) ./ ( L ` ( denom ` 1 ) ) ) ) |
9 |
|
gcd1 |
|- ( 1 e. ZZ -> ( 1 gcd 1 ) = 1 ) |
10 |
5 9
|
ax-mp |
|- ( 1 gcd 1 ) = 1 |
11 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
12 |
11
|
eqcomi |
|- 1 = ( 1 / 1 ) |
13 |
10 12
|
pm3.2i |
|- ( ( 1 gcd 1 ) = 1 /\ 1 = ( 1 / 1 ) ) |
14 |
|
1nn |
|- 1 e. NN |
15 |
|
qnumdenbi |
|- ( ( 1 e. QQ /\ 1 e. ZZ /\ 1 e. NN ) -> ( ( ( 1 gcd 1 ) = 1 /\ 1 = ( 1 / 1 ) ) <-> ( ( numer ` 1 ) = 1 /\ ( denom ` 1 ) = 1 ) ) ) |
16 |
6 5 14 15
|
mp3an |
|- ( ( ( 1 gcd 1 ) = 1 /\ 1 = ( 1 / 1 ) ) <-> ( ( numer ` 1 ) = 1 /\ ( denom ` 1 ) = 1 ) ) |
17 |
13 16
|
mpbi |
|- ( ( numer ` 1 ) = 1 /\ ( denom ` 1 ) = 1 ) |
18 |
17
|
simpli |
|- ( numer ` 1 ) = 1 |
19 |
18
|
fveq2i |
|- ( L ` ( numer ` 1 ) ) = ( L ` 1 ) |
20 |
17
|
simpri |
|- ( denom ` 1 ) = 1 |
21 |
20
|
fveq2i |
|- ( L ` ( denom ` 1 ) ) = ( L ` 1 ) |
22 |
19 21
|
oveq12i |
|- ( ( L ` ( numer ` 1 ) ) ./ ( L ` ( denom ` 1 ) ) ) = ( ( L ` 1 ) ./ ( L ` 1 ) ) |
23 |
|
drngring |
|- ( R e. DivRing -> R e. Ring ) |
24 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
25 |
3 24
|
zrh1 |
|- ( R e. Ring -> ( L ` 1 ) = ( 1r ` R ) ) |
26 |
25 25
|
oveq12d |
|- ( R e. Ring -> ( ( L ` 1 ) ./ ( L ` 1 ) ) = ( ( 1r ` R ) ./ ( 1r ` R ) ) ) |
27 |
23 26
|
syl |
|- ( R e. DivRing -> ( ( L ` 1 ) ./ ( L ` 1 ) ) = ( ( 1r ` R ) ./ ( 1r ` R ) ) ) |
28 |
1 24
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. B ) |
29 |
1 2 24
|
dvr1 |
|- ( ( R e. Ring /\ ( 1r ` R ) e. B ) -> ( ( 1r ` R ) ./ ( 1r ` R ) ) = ( 1r ` R ) ) |
30 |
23 28 29
|
syl2anc2 |
|- ( R e. DivRing -> ( ( 1r ` R ) ./ ( 1r ` R ) ) = ( 1r ` R ) ) |
31 |
27 30
|
eqtrd |
|- ( R e. DivRing -> ( ( L ` 1 ) ./ ( L ` 1 ) ) = ( 1r ` R ) ) |
32 |
22 31
|
eqtrid |
|- ( R e. DivRing -> ( ( L ` ( numer ` 1 ) ) ./ ( L ` ( denom ` 1 ) ) ) = ( 1r ` R ) ) |
33 |
32
|
adantr |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( ( L ` ( numer ` 1 ) ) ./ ( L ` ( denom ` 1 ) ) ) = ( 1r ` R ) ) |
34 |
8 33
|
eqtrd |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( ( QQHom ` R ) ` 1 ) = ( 1r ` R ) ) |