Metamath Proof Explorer


Theorem gcd1

Description: The gcd of a number with 1 is 1. Theorem 1.4(d)1 in ApostolNT p. 16. (Contributed by Mario Carneiro, 19-Feb-2014)

Ref Expression
Assertion gcd1 MMgcd1=1

Proof

Step Hyp Ref Expression
1 1z 1
2 gcddvds M1Mgcd1MMgcd11
3 1 2 mpan2 MMgcd1MMgcd11
4 3 simprd MMgcd11
5 ax-1ne0 10
6 simpr M=01=01=0
7 6 necon3ai 10¬M=01=0
8 5 7 ax-mp ¬M=01=0
9 gcdn0cl M1¬M=01=0Mgcd1
10 8 9 mpan2 M1Mgcd1
11 1 10 mpan2 MMgcd1
12 11 nnzd MMgcd1
13 1nn 1
14 dvdsle Mgcd11Mgcd11Mgcd11
15 12 13 14 sylancl MMgcd11Mgcd11
16 4 15 mpd MMgcd11
17 nnle1eq1 Mgcd1Mgcd11Mgcd1=1
18 11 17 syl MMgcd11Mgcd1=1
19 16 18 mpbid MMgcd1=1