Metamath Proof Explorer


Theorem gcdabs1

Description: gcd of the absolute value of the first operator. (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion gcdabs1 NMNgcdM=NgcdM

Proof

Step Hyp Ref Expression
1 oveq1 N=NNgcdM=NgcdM
2 1 a1i NMN=NNgcdM=NgcdM
3 neggcd NM- NgcdM=NgcdM
4 oveq1 N=NNgcdM=- NgcdM
5 4 eqeq1d N=NNgcdM=NgcdM- NgcdM=NgcdM
6 3 5 syl5ibrcom NMN=NNgcdM=NgcdM
7 zre NN
8 7 absord NN=NN=N
9 8 adantr NMN=NN=N
10 2 6 9 mpjaod NMNgcdM=NgcdM