Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( ( abs ‘ 𝑁 ) = 𝑁 → ( ( abs ‘ 𝑁 ) gcd 𝑀 ) = ( 𝑁 gcd 𝑀 ) ) |
2 |
1
|
a1i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) = 𝑁 → ( ( abs ‘ 𝑁 ) gcd 𝑀 ) = ( 𝑁 gcd 𝑀 ) ) ) |
3 |
|
neggcd |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( - 𝑁 gcd 𝑀 ) = ( 𝑁 gcd 𝑀 ) ) |
4 |
|
oveq1 |
⊢ ( ( abs ‘ 𝑁 ) = - 𝑁 → ( ( abs ‘ 𝑁 ) gcd 𝑀 ) = ( - 𝑁 gcd 𝑀 ) ) |
5 |
4
|
eqeq1d |
⊢ ( ( abs ‘ 𝑁 ) = - 𝑁 → ( ( ( abs ‘ 𝑁 ) gcd 𝑀 ) = ( 𝑁 gcd 𝑀 ) ↔ ( - 𝑁 gcd 𝑀 ) = ( 𝑁 gcd 𝑀 ) ) ) |
6 |
3 5
|
syl5ibrcom |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) = - 𝑁 → ( ( abs ‘ 𝑁 ) gcd 𝑀 ) = ( 𝑁 gcd 𝑀 ) ) ) |
7 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
8 |
7
|
absord |
⊢ ( 𝑁 ∈ ℤ → ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) = 𝑁 ∨ ( abs ‘ 𝑁 ) = - 𝑁 ) ) |
10 |
2 6 9
|
mpjaod |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( abs ‘ 𝑁 ) gcd 𝑀 ) = ( 𝑁 gcd 𝑀 ) ) |