| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 | ⊢ ( ( abs ‘ 𝑁 )  =  𝑁  →  ( ( abs ‘ 𝑁 )  gcd  𝑀 )  =  ( 𝑁  gcd  𝑀 ) ) | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( abs ‘ 𝑁 )  =  𝑁  →  ( ( abs ‘ 𝑁 )  gcd  𝑀 )  =  ( 𝑁  gcd  𝑀 ) ) ) | 
						
							| 3 |  | neggcd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( - 𝑁  gcd  𝑀 )  =  ( 𝑁  gcd  𝑀 ) ) | 
						
							| 4 |  | oveq1 | ⊢ ( ( abs ‘ 𝑁 )  =  - 𝑁  →  ( ( abs ‘ 𝑁 )  gcd  𝑀 )  =  ( - 𝑁  gcd  𝑀 ) ) | 
						
							| 5 | 4 | eqeq1d | ⊢ ( ( abs ‘ 𝑁 )  =  - 𝑁  →  ( ( ( abs ‘ 𝑁 )  gcd  𝑀 )  =  ( 𝑁  gcd  𝑀 )  ↔  ( - 𝑁  gcd  𝑀 )  =  ( 𝑁  gcd  𝑀 ) ) ) | 
						
							| 6 | 3 5 | syl5ibrcom | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( abs ‘ 𝑁 )  =  - 𝑁  →  ( ( abs ‘ 𝑁 )  gcd  𝑀 )  =  ( 𝑁  gcd  𝑀 ) ) ) | 
						
							| 7 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 8 | 7 | absord | ⊢ ( 𝑁  ∈  ℤ  →  ( ( abs ‘ 𝑁 )  =  𝑁  ∨  ( abs ‘ 𝑁 )  =  - 𝑁 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( abs ‘ 𝑁 )  =  𝑁  ∨  ( abs ‘ 𝑁 )  =  - 𝑁 ) ) | 
						
							| 10 | 2 6 9 | mpjaod | ⊢ ( ( 𝑁  ∈  ℤ  ∧  𝑀  ∈  ℤ )  →  ( ( abs ‘ 𝑁 )  gcd  𝑀 )  =  ( 𝑁  gcd  𝑀 ) ) |