Metamath Proof Explorer


Theorem gcdabs2

Description: gcd of the absolute value of the second operator. (Contributed by Scott Fenton, 2-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion gcdabs2 NMNgcdM=NgcdM

Proof

Step Hyp Ref Expression
1 gcdabs1 MNMgcdN=MgcdN
2 1 ancoms NMMgcdN=MgcdN
3 zabscl MM
4 gcdcom NMNgcdM=MgcdN
5 3 4 sylan2 NMNgcdM=MgcdN
6 gcdcom NMNgcdM=MgcdN
7 2 5 6 3eqtr4d NMNgcdM=NgcdM