Metamath Proof Explorer


Theorem dvdsle

Description: The divisors of a positive integer are bounded by it. The proof does not use / . (Contributed by Paul Chapman, 21-Mar-2011)

Ref Expression
Assertion dvdsle MNMNMN

Proof

Step Hyp Ref Expression
1 breq2 M=ifMM1N<MN<ifMM1
2 oveq2 M=ifMM1n M=nifMM1
3 2 neeq1d M=ifMM1n MNnifMM1N
4 1 3 imbi12d M=ifMM1N<Mn MNN<ifMM1nifMM1N
5 breq1 N=ifNN1N<ifMM1ifNN1<ifMM1
6 neeq2 N=ifNN1nifMM1NnifMM1ifNN1
7 5 6 imbi12d N=ifNN1N<ifMM1nifMM1NifNN1<ifMM1nifMM1ifNN1
8 oveq1 n=ifnn1nifMM1=ifnn1ifMM1
9 8 neeq1d n=ifnn1nifMM1ifNN1ifnn1ifMM1ifNN1
10 9 imbi2d n=ifnn1ifNN1<ifMM1nifMM1ifNN1ifNN1<ifMM1ifnn1ifMM1ifNN1
11 1z 1
12 11 elimel ifMM1
13 1nn 1
14 13 elimel ifNN1
15 11 elimel ifnn1
16 12 14 15 dvdslelem ifNN1<ifMM1ifnn1ifMM1ifNN1
17 4 7 10 16 dedth3h MNnN<Mn MN
18 17 3expia MNnN<Mn MN
19 18 com23 MNN<Mnn MN
20 19 3impia MNN<Mnn MN
21 20 imp MNN<Mnn MN
22 21 neneqd MNN<Mn¬n M=N
23 22 nrexdv MNN<M¬nn M=N
24 nnz NN
25 divides MNMNnn M=N
26 24 25 sylan2 MNMNnn M=N
27 26 3adant3 MNN<MMNnn M=N
28 23 27 mtbird MNN<M¬MN
29 28 3expia MNN<M¬MN
30 29 con2d MNMN¬N<M
31 zre MM
32 nnre NN
33 lenlt MNMN¬N<M
34 31 32 33 syl2an MNMN¬N<M
35 30 34 sylibrd MNMNMN