Description: The divisors of a positive integer are bounded by it. The proof does not use / . (Contributed by Paul Chapman, 21-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dvdsle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 | |
|
2 | oveq2 | |
|
3 | 2 | neeq1d | |
4 | 1 3 | imbi12d | |
5 | breq1 | |
|
6 | neeq2 | |
|
7 | 5 6 | imbi12d | |
8 | oveq1 | |
|
9 | 8 | neeq1d | |
10 | 9 | imbi2d | |
11 | 1z | |
|
12 | 11 | elimel | |
13 | 1nn | |
|
14 | 13 | elimel | |
15 | 11 | elimel | |
16 | 12 14 15 | dvdslelem | |
17 | 4 7 10 16 | dedth3h | |
18 | 17 | 3expia | |
19 | 18 | com23 | |
20 | 19 | 3impia | |
21 | 20 | imp | |
22 | 21 | neneqd | |
23 | 22 | nrexdv | |
24 | nnz | |
|
25 | divides | |
|
26 | 24 25 | sylan2 | |
27 | 26 | 3adant3 | |
28 | 23 27 | mtbird | |
29 | 28 | 3expia | |
30 | 29 | con2d | |
31 | zre | |
|
32 | nnre | |
|
33 | lenlt | |
|
34 | 31 32 33 | syl2an | |
35 | 30 34 | sylibrd | |