| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qqhval2.0 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
| 2 |
|
qqhval2.1 |
⊢ / = ( /r ‘ 𝑅 ) |
| 3 |
|
qqhval2.2 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
| 4 |
|
zssq |
⊢ ℤ ⊆ ℚ |
| 5 |
|
0z |
⊢ 0 ∈ ℤ |
| 6 |
4 5
|
sselii |
⊢ 0 ∈ ℚ |
| 7 |
1 2 3
|
qqhvval |
⊢ ( ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 0 ∈ ℚ ) → ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) = ( ( 𝐿 ‘ ( numer ‘ 0 ) ) / ( 𝐿 ‘ ( denom ‘ 0 ) ) ) ) |
| 8 |
6 7
|
mpan2 |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) = ( ( 𝐿 ‘ ( numer ‘ 0 ) ) / ( 𝐿 ‘ ( denom ‘ 0 ) ) ) ) |
| 9 |
|
1z |
⊢ 1 ∈ ℤ |
| 10 |
|
gcd0id |
⊢ ( 1 ∈ ℤ → ( 0 gcd 1 ) = ( abs ‘ 1 ) ) |
| 11 |
9 10
|
ax-mp |
⊢ ( 0 gcd 1 ) = ( abs ‘ 1 ) |
| 12 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
| 13 |
11 12
|
eqtri |
⊢ ( 0 gcd 1 ) = 1 |
| 14 |
|
0cn |
⊢ 0 ∈ ℂ |
| 15 |
14
|
div1i |
⊢ ( 0 / 1 ) = 0 |
| 16 |
15
|
eqcomi |
⊢ 0 = ( 0 / 1 ) |
| 17 |
13 16
|
pm3.2i |
⊢ ( ( 0 gcd 1 ) = 1 ∧ 0 = ( 0 / 1 ) ) |
| 18 |
|
1nn |
⊢ 1 ∈ ℕ |
| 19 |
|
qnumdenbi |
⊢ ( ( 0 ∈ ℚ ∧ 0 ∈ ℤ ∧ 1 ∈ ℕ ) → ( ( ( 0 gcd 1 ) = 1 ∧ 0 = ( 0 / 1 ) ) ↔ ( ( numer ‘ 0 ) = 0 ∧ ( denom ‘ 0 ) = 1 ) ) ) |
| 20 |
6 5 18 19
|
mp3an |
⊢ ( ( ( 0 gcd 1 ) = 1 ∧ 0 = ( 0 / 1 ) ) ↔ ( ( numer ‘ 0 ) = 0 ∧ ( denom ‘ 0 ) = 1 ) ) |
| 21 |
17 20
|
mpbi |
⊢ ( ( numer ‘ 0 ) = 0 ∧ ( denom ‘ 0 ) = 1 ) |
| 22 |
21
|
simpli |
⊢ ( numer ‘ 0 ) = 0 |
| 23 |
22
|
fveq2i |
⊢ ( 𝐿 ‘ ( numer ‘ 0 ) ) = ( 𝐿 ‘ 0 ) |
| 24 |
21
|
simpri |
⊢ ( denom ‘ 0 ) = 1 |
| 25 |
24
|
fveq2i |
⊢ ( 𝐿 ‘ ( denom ‘ 0 ) ) = ( 𝐿 ‘ 1 ) |
| 26 |
23 25
|
oveq12i |
⊢ ( ( 𝐿 ‘ ( numer ‘ 0 ) ) / ( 𝐿 ‘ ( denom ‘ 0 ) ) ) = ( ( 𝐿 ‘ 0 ) / ( 𝐿 ‘ 1 ) ) |
| 27 |
|
drngring |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Ring ) |
| 28 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 29 |
3 28
|
zrh0 |
⊢ ( 𝑅 ∈ Ring → ( 𝐿 ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
| 30 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 31 |
3 30
|
zrh1 |
⊢ ( 𝑅 ∈ Ring → ( 𝐿 ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
| 32 |
29 31
|
oveq12d |
⊢ ( 𝑅 ∈ Ring → ( ( 𝐿 ‘ 0 ) / ( 𝐿 ‘ 1 ) ) = ( ( 0g ‘ 𝑅 ) / ( 1r ‘ 𝑅 ) ) ) |
| 33 |
27 32
|
syl |
⊢ ( 𝑅 ∈ DivRing → ( ( 𝐿 ‘ 0 ) / ( 𝐿 ‘ 1 ) ) = ( ( 0g ‘ 𝑅 ) / ( 1r ‘ 𝑅 ) ) ) |
| 34 |
|
drnggrp |
⊢ ( 𝑅 ∈ DivRing → 𝑅 ∈ Grp ) |
| 35 |
1 28
|
grpidcl |
⊢ ( 𝑅 ∈ Grp → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 36 |
34 35
|
syl |
⊢ ( 𝑅 ∈ DivRing → ( 0g ‘ 𝑅 ) ∈ 𝐵 ) |
| 37 |
1 2 30
|
dvr1 |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 0g ‘ 𝑅 ) ∈ 𝐵 ) → ( ( 0g ‘ 𝑅 ) / ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 38 |
27 36 37
|
syl2anc |
⊢ ( 𝑅 ∈ DivRing → ( ( 0g ‘ 𝑅 ) / ( 1r ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 39 |
33 38
|
eqtrd |
⊢ ( 𝑅 ∈ DivRing → ( ( 𝐿 ‘ 0 ) / ( 𝐿 ‘ 1 ) ) = ( 0g ‘ 𝑅 ) ) |
| 40 |
26 39
|
eqtrid |
⊢ ( 𝑅 ∈ DivRing → ( ( 𝐿 ‘ ( numer ‘ 0 ) ) / ( 𝐿 ‘ ( denom ‘ 0 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ( 𝐿 ‘ ( numer ‘ 0 ) ) / ( 𝐿 ‘ ( denom ‘ 0 ) ) ) = ( 0g ‘ 𝑅 ) ) |
| 42 |
8 41
|
eqtrd |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |