| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qqhval2.0 | ⊢ 𝐵  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | qqhval2.1 | ⊢  /   =  ( /r ‘ 𝑅 ) | 
						
							| 3 |  | qqhval2.2 | ⊢ 𝐿  =  ( ℤRHom ‘ 𝑅 ) | 
						
							| 4 |  | zssq | ⊢ ℤ  ⊆  ℚ | 
						
							| 5 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 6 | 4 5 | sselii | ⊢ 0  ∈  ℚ | 
						
							| 7 | 1 2 3 | qqhvval | ⊢ ( ( ( 𝑅  ∈  DivRing  ∧  ( chr ‘ 𝑅 )  =  0 )  ∧  0  ∈  ℚ )  →  ( ( ℚHom ‘ 𝑅 ) ‘ 0 )  =  ( ( 𝐿 ‘ ( numer ‘ 0 ) )  /  ( 𝐿 ‘ ( denom ‘ 0 ) ) ) ) | 
						
							| 8 | 6 7 | mpan2 | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( chr ‘ 𝑅 )  =  0 )  →  ( ( ℚHom ‘ 𝑅 ) ‘ 0 )  =  ( ( 𝐿 ‘ ( numer ‘ 0 ) )  /  ( 𝐿 ‘ ( denom ‘ 0 ) ) ) ) | 
						
							| 9 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 10 |  | gcd0id | ⊢ ( 1  ∈  ℤ  →  ( 0  gcd  1 )  =  ( abs ‘ 1 ) ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ( 0  gcd  1 )  =  ( abs ‘ 1 ) | 
						
							| 12 |  | abs1 | ⊢ ( abs ‘ 1 )  =  1 | 
						
							| 13 | 11 12 | eqtri | ⊢ ( 0  gcd  1 )  =  1 | 
						
							| 14 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 15 | 14 | div1i | ⊢ ( 0  /  1 )  =  0 | 
						
							| 16 | 15 | eqcomi | ⊢ 0  =  ( 0  /  1 ) | 
						
							| 17 | 13 16 | pm3.2i | ⊢ ( ( 0  gcd  1 )  =  1  ∧  0  =  ( 0  /  1 ) ) | 
						
							| 18 |  | 1nn | ⊢ 1  ∈  ℕ | 
						
							| 19 |  | qnumdenbi | ⊢ ( ( 0  ∈  ℚ  ∧  0  ∈  ℤ  ∧  1  ∈  ℕ )  →  ( ( ( 0  gcd  1 )  =  1  ∧  0  =  ( 0  /  1 ) )  ↔  ( ( numer ‘ 0 )  =  0  ∧  ( denom ‘ 0 )  =  1 ) ) ) | 
						
							| 20 | 6 5 18 19 | mp3an | ⊢ ( ( ( 0  gcd  1 )  =  1  ∧  0  =  ( 0  /  1 ) )  ↔  ( ( numer ‘ 0 )  =  0  ∧  ( denom ‘ 0 )  =  1 ) ) | 
						
							| 21 | 17 20 | mpbi | ⊢ ( ( numer ‘ 0 )  =  0  ∧  ( denom ‘ 0 )  =  1 ) | 
						
							| 22 | 21 | simpli | ⊢ ( numer ‘ 0 )  =  0 | 
						
							| 23 | 22 | fveq2i | ⊢ ( 𝐿 ‘ ( numer ‘ 0 ) )  =  ( 𝐿 ‘ 0 ) | 
						
							| 24 | 21 | simpri | ⊢ ( denom ‘ 0 )  =  1 | 
						
							| 25 | 24 | fveq2i | ⊢ ( 𝐿 ‘ ( denom ‘ 0 ) )  =  ( 𝐿 ‘ 1 ) | 
						
							| 26 | 23 25 | oveq12i | ⊢ ( ( 𝐿 ‘ ( numer ‘ 0 ) )  /  ( 𝐿 ‘ ( denom ‘ 0 ) ) )  =  ( ( 𝐿 ‘ 0 )  /  ( 𝐿 ‘ 1 ) ) | 
						
							| 27 |  | drngring | ⊢ ( 𝑅  ∈  DivRing  →  𝑅  ∈  Ring ) | 
						
							| 28 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 29 | 3 28 | zrh0 | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐿 ‘ 0 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 30 |  | eqid | ⊢ ( 1r ‘ 𝑅 )  =  ( 1r ‘ 𝑅 ) | 
						
							| 31 | 3 30 | zrh1 | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐿 ‘ 1 )  =  ( 1r ‘ 𝑅 ) ) | 
						
							| 32 | 29 31 | oveq12d | ⊢ ( 𝑅  ∈  Ring  →  ( ( 𝐿 ‘ 0 )  /  ( 𝐿 ‘ 1 ) )  =  ( ( 0g ‘ 𝑅 )  /  ( 1r ‘ 𝑅 ) ) ) | 
						
							| 33 | 27 32 | syl | ⊢ ( 𝑅  ∈  DivRing  →  ( ( 𝐿 ‘ 0 )  /  ( 𝐿 ‘ 1 ) )  =  ( ( 0g ‘ 𝑅 )  /  ( 1r ‘ 𝑅 ) ) ) | 
						
							| 34 |  | drnggrp | ⊢ ( 𝑅  ∈  DivRing  →  𝑅  ∈  Grp ) | 
						
							| 35 | 1 28 | grpidcl | ⊢ ( 𝑅  ∈  Grp  →  ( 0g ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝑅  ∈  DivRing  →  ( 0g ‘ 𝑅 )  ∈  𝐵 ) | 
						
							| 37 | 1 2 30 | dvr1 | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 0g ‘ 𝑅 )  ∈  𝐵 )  →  ( ( 0g ‘ 𝑅 )  /  ( 1r ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 38 | 27 36 37 | syl2anc | ⊢ ( 𝑅  ∈  DivRing  →  ( ( 0g ‘ 𝑅 )  /  ( 1r ‘ 𝑅 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 39 | 33 38 | eqtrd | ⊢ ( 𝑅  ∈  DivRing  →  ( ( 𝐿 ‘ 0 )  /  ( 𝐿 ‘ 1 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 40 | 26 39 | eqtrid | ⊢ ( 𝑅  ∈  DivRing  →  ( ( 𝐿 ‘ ( numer ‘ 0 ) )  /  ( 𝐿 ‘ ( denom ‘ 0 ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( chr ‘ 𝑅 )  =  0 )  →  ( ( 𝐿 ‘ ( numer ‘ 0 ) )  /  ( 𝐿 ‘ ( denom ‘ 0 ) ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 42 | 8 41 | eqtrd | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( chr ‘ 𝑅 )  =  0 )  →  ( ( ℚHom ‘ 𝑅 ) ‘ 0 )  =  ( 0g ‘ 𝑅 ) ) |