| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gcd0val |
|- ( 0 gcd 0 ) = 0 |
| 2 |
|
oveq2 |
|- ( N = 0 -> ( 0 gcd N ) = ( 0 gcd 0 ) ) |
| 3 |
|
fveq2 |
|- ( N = 0 -> ( abs ` N ) = ( abs ` 0 ) ) |
| 4 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
| 5 |
3 4
|
eqtrdi |
|- ( N = 0 -> ( abs ` N ) = 0 ) |
| 6 |
1 2 5
|
3eqtr4a |
|- ( N = 0 -> ( 0 gcd N ) = ( abs ` N ) ) |
| 7 |
6
|
adantl |
|- ( ( N e. ZZ /\ N = 0 ) -> ( 0 gcd N ) = ( abs ` N ) ) |
| 8 |
|
0z |
|- 0 e. ZZ |
| 9 |
|
gcddvds |
|- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( ( 0 gcd N ) || 0 /\ ( 0 gcd N ) || N ) ) |
| 10 |
8 9
|
mpan |
|- ( N e. ZZ -> ( ( 0 gcd N ) || 0 /\ ( 0 gcd N ) || N ) ) |
| 11 |
10
|
simprd |
|- ( N e. ZZ -> ( 0 gcd N ) || N ) |
| 12 |
11
|
adantr |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( 0 gcd N ) || N ) |
| 13 |
|
gcdcl |
|- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 gcd N ) e. NN0 ) |
| 14 |
8 13
|
mpan |
|- ( N e. ZZ -> ( 0 gcd N ) e. NN0 ) |
| 15 |
14
|
nn0zd |
|- ( N e. ZZ -> ( 0 gcd N ) e. ZZ ) |
| 16 |
|
dvdsleabs |
|- ( ( ( 0 gcd N ) e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( 0 gcd N ) || N -> ( 0 gcd N ) <_ ( abs ` N ) ) ) |
| 17 |
15 16
|
syl3an1 |
|- ( ( N e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( 0 gcd N ) || N -> ( 0 gcd N ) <_ ( abs ` N ) ) ) |
| 18 |
17
|
3anidm12 |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( ( 0 gcd N ) || N -> ( 0 gcd N ) <_ ( abs ` N ) ) ) |
| 19 |
12 18
|
mpd |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( 0 gcd N ) <_ ( abs ` N ) ) |
| 20 |
|
zabscl |
|- ( N e. ZZ -> ( abs ` N ) e. ZZ ) |
| 21 |
|
dvds0 |
|- ( ( abs ` N ) e. ZZ -> ( abs ` N ) || 0 ) |
| 22 |
20 21
|
syl |
|- ( N e. ZZ -> ( abs ` N ) || 0 ) |
| 23 |
|
iddvds |
|- ( N e. ZZ -> N || N ) |
| 24 |
|
absdvdsb |
|- ( ( N e. ZZ /\ N e. ZZ ) -> ( N || N <-> ( abs ` N ) || N ) ) |
| 25 |
24
|
anidms |
|- ( N e. ZZ -> ( N || N <-> ( abs ` N ) || N ) ) |
| 26 |
23 25
|
mpbid |
|- ( N e. ZZ -> ( abs ` N ) || N ) |
| 27 |
22 26
|
jca |
|- ( N e. ZZ -> ( ( abs ` N ) || 0 /\ ( abs ` N ) || N ) ) |
| 28 |
27
|
adantr |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( ( abs ` N ) || 0 /\ ( abs ` N ) || N ) ) |
| 29 |
|
eqid |
|- 0 = 0 |
| 30 |
29
|
biantrur |
|- ( N = 0 <-> ( 0 = 0 /\ N = 0 ) ) |
| 31 |
30
|
necon3abii |
|- ( N =/= 0 <-> -. ( 0 = 0 /\ N = 0 ) ) |
| 32 |
|
dvdslegcd |
|- ( ( ( ( abs ` N ) e. ZZ /\ 0 e. ZZ /\ N e. ZZ ) /\ -. ( 0 = 0 /\ N = 0 ) ) -> ( ( ( abs ` N ) || 0 /\ ( abs ` N ) || N ) -> ( abs ` N ) <_ ( 0 gcd N ) ) ) |
| 33 |
32
|
ex |
|- ( ( ( abs ` N ) e. ZZ /\ 0 e. ZZ /\ N e. ZZ ) -> ( -. ( 0 = 0 /\ N = 0 ) -> ( ( ( abs ` N ) || 0 /\ ( abs ` N ) || N ) -> ( abs ` N ) <_ ( 0 gcd N ) ) ) ) |
| 34 |
8 33
|
mp3an2 |
|- ( ( ( abs ` N ) e. ZZ /\ N e. ZZ ) -> ( -. ( 0 = 0 /\ N = 0 ) -> ( ( ( abs ` N ) || 0 /\ ( abs ` N ) || N ) -> ( abs ` N ) <_ ( 0 gcd N ) ) ) ) |
| 35 |
20 34
|
mpancom |
|- ( N e. ZZ -> ( -. ( 0 = 0 /\ N = 0 ) -> ( ( ( abs ` N ) || 0 /\ ( abs ` N ) || N ) -> ( abs ` N ) <_ ( 0 gcd N ) ) ) ) |
| 36 |
31 35
|
biimtrid |
|- ( N e. ZZ -> ( N =/= 0 -> ( ( ( abs ` N ) || 0 /\ ( abs ` N ) || N ) -> ( abs ` N ) <_ ( 0 gcd N ) ) ) ) |
| 37 |
36
|
imp |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( ( ( abs ` N ) || 0 /\ ( abs ` N ) || N ) -> ( abs ` N ) <_ ( 0 gcd N ) ) ) |
| 38 |
28 37
|
mpd |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) <_ ( 0 gcd N ) ) |
| 39 |
15
|
zred |
|- ( N e. ZZ -> ( 0 gcd N ) e. RR ) |
| 40 |
20
|
zred |
|- ( N e. ZZ -> ( abs ` N ) e. RR ) |
| 41 |
39 40
|
letri3d |
|- ( N e. ZZ -> ( ( 0 gcd N ) = ( abs ` N ) <-> ( ( 0 gcd N ) <_ ( abs ` N ) /\ ( abs ` N ) <_ ( 0 gcd N ) ) ) ) |
| 42 |
41
|
adantr |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( ( 0 gcd N ) = ( abs ` N ) <-> ( ( 0 gcd N ) <_ ( abs ` N ) /\ ( abs ` N ) <_ ( 0 gcd N ) ) ) ) |
| 43 |
19 38 42
|
mpbir2and |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( 0 gcd N ) = ( abs ` N ) ) |
| 44 |
7 43
|
pm2.61dane |
|- ( N e. ZZ -> ( 0 gcd N ) = ( abs ` N ) ) |