| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qqhcn.q |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
| 2 |
|
qqhcn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑄 ) |
| 3 |
|
qqhcn.z |
⊢ 𝑍 = ( ℤMod ‘ 𝑅 ) |
| 4 |
|
qqhcn.k |
⊢ 𝐾 = ( TopOpen ‘ 𝑅 ) |
| 5 |
|
inss2 |
⊢ ( NrmRing ∩ DivRing ) ⊆ DivRing |
| 6 |
5
|
sseli |
⊢ ( 𝑅 ∈ ( NrmRing ∩ DivRing ) → 𝑅 ∈ DivRing ) |
| 7 |
6
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → 𝑅 ∈ DivRing ) |
| 8 |
|
simp3 |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → ( chr ‘ 𝑅 ) = 0 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 10 |
|
eqid |
⊢ ( /r ‘ 𝑅 ) = ( /r ‘ 𝑅 ) |
| 11 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
| 12 |
9 10 11
|
qqhf |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) : ℚ ⟶ ( Base ‘ 𝑅 ) ) |
| 13 |
7 8 12
|
syl2anc |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) : ℚ ⟶ ( Base ‘ 𝑅 ) ) |
| 14 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) → 𝑒 ∈ ℝ+ ) |
| 15 |
|
qsscn |
⊢ ℚ ⊆ ℂ |
| 16 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → 𝑞 ∈ ℚ ) |
| 17 |
15 16
|
sselid |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → 𝑞 ∈ ℂ ) |
| 18 |
|
0cn |
⊢ 0 ∈ ℂ |
| 19 |
|
eqid |
⊢ ( abs ∘ − ) = ( abs ∘ − ) |
| 20 |
19
|
cnmetdval |
⊢ ( ( 0 ∈ ℂ ∧ 𝑞 ∈ ℂ ) → ( 0 ( abs ∘ − ) 𝑞 ) = ( abs ‘ ( 0 − 𝑞 ) ) ) |
| 21 |
18 20
|
mpan |
⊢ ( 𝑞 ∈ ℂ → ( 0 ( abs ∘ − ) 𝑞 ) = ( abs ‘ ( 0 − 𝑞 ) ) ) |
| 22 |
|
df-neg |
⊢ - 𝑞 = ( 0 − 𝑞 ) |
| 23 |
22
|
fveq2i |
⊢ ( abs ‘ - 𝑞 ) = ( abs ‘ ( 0 − 𝑞 ) ) |
| 24 |
23
|
a1i |
⊢ ( 𝑞 ∈ ℂ → ( abs ‘ - 𝑞 ) = ( abs ‘ ( 0 − 𝑞 ) ) ) |
| 25 |
|
absneg |
⊢ ( 𝑞 ∈ ℂ → ( abs ‘ - 𝑞 ) = ( abs ‘ 𝑞 ) ) |
| 26 |
21 24 25
|
3eqtr2d |
⊢ ( 𝑞 ∈ ℂ → ( 0 ( abs ∘ − ) 𝑞 ) = ( abs ‘ 𝑞 ) ) |
| 27 |
17 26
|
syl |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( 0 ( abs ∘ − ) 𝑞 ) = ( abs ‘ 𝑞 ) ) |
| 28 |
|
zssq |
⊢ ℤ ⊆ ℚ |
| 29 |
|
0z |
⊢ 0 ∈ ℤ |
| 30 |
28 29
|
sselii |
⊢ 0 ∈ ℚ |
| 31 |
30
|
a1i |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → 0 ∈ ℚ ) |
| 32 |
31 16
|
ovresd |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( 0 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) = ( 0 ( abs ∘ − ) 𝑞 ) ) |
| 33 |
|
eqid |
⊢ ( norm ‘ 𝑅 ) = ( norm ‘ 𝑅 ) |
| 34 |
33 3
|
qqhnm |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑞 ∈ ℚ ) → ( ( norm ‘ 𝑅 ) ‘ ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) = ( abs ‘ 𝑞 ) ) |
| 35 |
34
|
adantlr |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( ( norm ‘ 𝑅 ) ‘ ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) = ( abs ‘ 𝑞 ) ) |
| 36 |
27 32 35
|
3eqtr4d |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( 0 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) = ( ( norm ‘ 𝑅 ) ‘ ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) ) |
| 37 |
13
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( ℚHom ‘ 𝑅 ) : ℚ ⟶ ( Base ‘ 𝑅 ) ) |
| 38 |
37 31
|
ffvelcdmd |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
| 39 |
37 16
|
ffvelcdmd |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ∈ ( Base ‘ 𝑅 ) ) |
| 40 |
38 39
|
ovresd |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) = ( ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ( dist ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) ) |
| 41 |
|
inss1 |
⊢ ( NrmRing ∩ DivRing ) ⊆ NrmRing |
| 42 |
41
|
sseli |
⊢ ( 𝑅 ∈ ( NrmRing ∩ DivRing ) → 𝑅 ∈ NrmRing ) |
| 43 |
42
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → 𝑅 ∈ NrmRing ) |
| 44 |
43
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → 𝑅 ∈ NrmRing ) |
| 45 |
|
nrgngp |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp ) |
| 46 |
44 45
|
syl |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → 𝑅 ∈ NrmGrp ) |
| 47 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
| 48 |
|
eqid |
⊢ ( dist ‘ 𝑅 ) = ( dist ‘ 𝑅 ) |
| 49 |
33 9 47 48
|
ngpdsr |
⊢ ( ( 𝑅 ∈ NrmGrp ∧ ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ∧ ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ( dist ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) = ( ( norm ‘ 𝑅 ) ‘ ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ( -g ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ) ) ) |
| 50 |
46 38 39 49
|
syl3anc |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ( dist ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) = ( ( norm ‘ 𝑅 ) ‘ ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ( -g ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ) ) ) |
| 51 |
7
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → 𝑅 ∈ DivRing ) |
| 52 |
8
|
ad2antrr |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( chr ‘ 𝑅 ) = 0 ) |
| 53 |
9 10 11
|
qqh0 |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
| 54 |
51 52 53
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
| 55 |
54
|
oveq2d |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ( -g ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ) = ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
| 56 |
|
ngpgrp |
⊢ ( 𝑅 ∈ NrmGrp → 𝑅 ∈ Grp ) |
| 57 |
46 56
|
syl |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → 𝑅 ∈ Grp ) |
| 58 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 59 |
9 58 47
|
grpsubid1 |
⊢ ( ( 𝑅 ∈ Grp ∧ ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) |
| 60 |
57 39 59
|
syl2anc |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ( -g ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) |
| 61 |
55 60
|
eqtrd |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ( -g ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ) = ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) |
| 62 |
61
|
fveq2d |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( ( norm ‘ 𝑅 ) ‘ ( ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ( -g ‘ 𝑅 ) ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ) ) = ( ( norm ‘ 𝑅 ) ‘ ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) ) |
| 63 |
40 50 62
|
3eqtrd |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) = ( ( norm ‘ 𝑅 ) ‘ ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) ) |
| 64 |
36 63
|
eqtr4d |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( 0 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) = ( ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) ) |
| 65 |
64
|
breq1d |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( ( 0 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑒 ↔ ( ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) |
| 66 |
65
|
biimpd |
⊢ ( ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) ∧ 𝑞 ∈ ℚ ) → ( ( 0 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑒 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) |
| 67 |
66
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) → ∀ 𝑞 ∈ ℚ ( ( 0 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑒 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) |
| 68 |
|
breq2 |
⊢ ( 𝑑 = 𝑒 → ( ( 0 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑑 ↔ ( 0 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑒 ) ) |
| 69 |
68
|
rspceaimv |
⊢ ( ( 𝑒 ∈ ℝ+ ∧ ∀ 𝑞 ∈ ℚ ( ( 0 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑒 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑞 ∈ ℚ ( ( 0 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑑 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) |
| 70 |
14 67 69
|
syl2anc |
⊢ ( ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ 𝑒 ∈ ℝ+ ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑞 ∈ ℚ ( ( 0 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑑 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) |
| 71 |
70
|
ralrimiva |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑞 ∈ ℚ ( ( 0 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑑 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) |
| 72 |
|
cnfldxms |
⊢ ℂfld ∈ ∞MetSp |
| 73 |
|
qex |
⊢ ℚ ∈ V |
| 74 |
|
ressxms |
⊢ ( ( ℂfld ∈ ∞MetSp ∧ ℚ ∈ V ) → ( ℂfld ↾s ℚ ) ∈ ∞MetSp ) |
| 75 |
72 73 74
|
mp2an |
⊢ ( ℂfld ↾s ℚ ) ∈ ∞MetSp |
| 76 |
1 75
|
eqeltri |
⊢ 𝑄 ∈ ∞MetSp |
| 77 |
1
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
| 78 |
|
cnfldds |
⊢ ( abs ∘ − ) = ( dist ‘ ℂfld ) |
| 79 |
1 78
|
ressds |
⊢ ( ℚ ∈ V → ( abs ∘ − ) = ( dist ‘ 𝑄 ) ) |
| 80 |
73 79
|
ax-mp |
⊢ ( abs ∘ − ) = ( dist ‘ 𝑄 ) |
| 81 |
77 80
|
xmsxmet2 |
⊢ ( 𝑄 ∈ ∞MetSp → ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ∈ ( ∞Met ‘ ℚ ) ) |
| 82 |
76 81
|
mp1i |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ∈ ( ∞Met ‘ ℚ ) ) |
| 83 |
|
ngpxms |
⊢ ( 𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp ) |
| 84 |
42 45 83
|
3syl |
⊢ ( 𝑅 ∈ ( NrmRing ∩ DivRing ) → 𝑅 ∈ ∞MetSp ) |
| 85 |
84
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → 𝑅 ∈ ∞MetSp ) |
| 86 |
9 48
|
xmsxmet2 |
⊢ ( 𝑅 ∈ ∞MetSp → ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑅 ) ) ) |
| 87 |
85 86
|
syl |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑅 ) ) ) |
| 88 |
30
|
a1i |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → 0 ∈ ℚ ) |
| 89 |
80
|
reseq1i |
⊢ ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) = ( ( dist ‘ 𝑄 ) ↾ ( ℚ × ℚ ) ) |
| 90 |
2 77 89
|
xmstopn |
⊢ ( 𝑄 ∈ ∞MetSp → 𝐽 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ) ) |
| 91 |
76 90
|
ax-mp |
⊢ 𝐽 = ( MetOpen ‘ ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ) |
| 92 |
|
eqid |
⊢ ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) |
| 93 |
91 92
|
metcnp |
⊢ ( ( ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) ∈ ( ∞Met ‘ ℚ ) ∧ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑅 ) ) ∧ 0 ∈ ℚ ) → ( ( ℚHom ‘ 𝑅 ) ∈ ( ( 𝐽 CnP ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) ) ‘ 0 ) ↔ ( ( ℚHom ‘ 𝑅 ) : ℚ ⟶ ( Base ‘ 𝑅 ) ∧ ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑞 ∈ ℚ ( ( 0 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑑 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) ) ) |
| 94 |
82 87 88 93
|
syl3anc |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ( ℚHom ‘ 𝑅 ) ∈ ( ( 𝐽 CnP ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) ) ‘ 0 ) ↔ ( ( ℚHom ‘ 𝑅 ) : ℚ ⟶ ( Base ‘ 𝑅 ) ∧ ∀ 𝑒 ∈ ℝ+ ∃ 𝑑 ∈ ℝ+ ∀ 𝑞 ∈ ℚ ( ( 0 ( ( abs ∘ − ) ↾ ( ℚ × ℚ ) ) 𝑞 ) < 𝑑 → ( ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ( ( ℚHom ‘ 𝑅 ) ‘ 𝑞 ) ) < 𝑒 ) ) ) ) |
| 95 |
13 71 94
|
mpbir2and |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) ∈ ( ( 𝐽 CnP ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) ) ‘ 0 ) ) |
| 96 |
|
eqid |
⊢ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) = ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) |
| 97 |
4 9 96
|
xmstopn |
⊢ ( 𝑅 ∈ ∞MetSp → 𝐾 = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) ) |
| 98 |
85 97
|
syl |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → 𝐾 = ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) ) |
| 99 |
98
|
oveq2d |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → ( 𝐽 CnP 𝐾 ) = ( 𝐽 CnP ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) ) ) |
| 100 |
99
|
fveq1d |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ( 𝐽 CnP 𝐾 ) ‘ 0 ) = ( ( 𝐽 CnP ( MetOpen ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) ) ‘ 0 ) ) |
| 101 |
95 100
|
eleqtrrd |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 0 ) ) |
| 102 |
|
cnfldtgp |
⊢ ℂfld ∈ TopGrp |
| 103 |
|
qsubdrg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) |
| 104 |
103
|
simpli |
⊢ ℚ ∈ ( SubRing ‘ ℂfld ) |
| 105 |
|
subrgsubg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) → ℚ ∈ ( SubGrp ‘ ℂfld ) ) |
| 106 |
104 105
|
ax-mp |
⊢ ℚ ∈ ( SubGrp ‘ ℂfld ) |
| 107 |
1
|
subgtgp |
⊢ ( ( ℂfld ∈ TopGrp ∧ ℚ ∈ ( SubGrp ‘ ℂfld ) ) → 𝑄 ∈ TopGrp ) |
| 108 |
102 106 107
|
mp2an |
⊢ 𝑄 ∈ TopGrp |
| 109 |
|
tgptmd |
⊢ ( 𝑄 ∈ TopGrp → 𝑄 ∈ TopMnd ) |
| 110 |
108 109
|
mp1i |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → 𝑄 ∈ TopMnd ) |
| 111 |
|
nrgtrg |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ TopRing ) |
| 112 |
|
trgtmd2 |
⊢ ( 𝑅 ∈ TopRing → 𝑅 ∈ TopMnd ) |
| 113 |
43 111 112
|
3syl |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → 𝑅 ∈ TopMnd ) |
| 114 |
9 10 11 1
|
qqhghm |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) ∈ ( 𝑄 GrpHom 𝑅 ) ) |
| 115 |
7 8 114
|
syl2anc |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) ∈ ( 𝑄 GrpHom 𝑅 ) ) |
| 116 |
77 2 4
|
ghmcnp |
⊢ ( ( 𝑄 ∈ TopMnd ∧ 𝑅 ∈ TopMnd ∧ ( ℚHom ‘ 𝑅 ) ∈ ( 𝑄 GrpHom 𝑅 ) ) → ( ( ℚHom ‘ 𝑅 ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 0 ) ↔ ( 0 ∈ ℚ ∧ ( ℚHom ‘ 𝑅 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 117 |
110 113 115 116
|
syl3anc |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ( ℚHom ‘ 𝑅 ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 0 ) ↔ ( 0 ∈ ℚ ∧ ( ℚHom ‘ 𝑅 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 118 |
101 117
|
mpbid |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → ( 0 ∈ ℚ ∧ ( ℚHom ‘ 𝑅 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 119 |
118
|
simprd |
⊢ ( ( 𝑅 ∈ ( NrmRing ∩ DivRing ) ∧ 𝑍 ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ℚHom ‘ 𝑅 ) ∈ ( 𝐽 Cn 𝐾 ) ) |