| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nrgtgp |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ TopGrp ) |
| 2 |
|
nrgring |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ Ring ) |
| 3 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 4 |
3
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 5 |
2 4
|
syl |
⊢ ( 𝑅 ∈ NrmRing → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 6 |
|
tgptps |
⊢ ( 𝑅 ∈ TopGrp → 𝑅 ∈ TopSp ) |
| 7 |
1 6
|
syl |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ TopSp ) |
| 8 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 9 |
|
eqid |
⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ 𝑅 ) |
| 10 |
8 9
|
istps |
⊢ ( 𝑅 ∈ TopSp ↔ ( TopOpen ‘ 𝑅 ) ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 11 |
7 10
|
sylib |
⊢ ( 𝑅 ∈ NrmRing → ( TopOpen ‘ 𝑅 ) ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 12 |
3 8
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 13 |
3 9
|
mgptopn |
⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( mulGrp ‘ 𝑅 ) ) |
| 14 |
12 13
|
istps |
⊢ ( ( mulGrp ‘ 𝑅 ) ∈ TopSp ↔ ( TopOpen ‘ 𝑅 ) ∈ ( TopOn ‘ ( Base ‘ 𝑅 ) ) ) |
| 15 |
11 14
|
sylibr |
⊢ ( 𝑅 ∈ NrmRing → ( mulGrp ‘ 𝑅 ) ∈ TopSp ) |
| 16 |
|
rlmnlm |
⊢ ( 𝑅 ∈ NrmRing → ( ringLMod ‘ 𝑅 ) ∈ NrmMod ) |
| 17 |
|
rlmsca2 |
⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) |
| 18 |
|
rlmscaf |
⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( ·sf ‘ ( ringLMod ‘ 𝑅 ) ) |
| 19 |
|
rlmtopn |
⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( ringLMod ‘ 𝑅 ) ) |
| 20 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
| 21 |
20 8
|
strfvi |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( I ‘ 𝑅 ) ) |
| 22 |
21
|
a1i |
⊢ ( ⊤ → ( Base ‘ 𝑅 ) = ( Base ‘ ( I ‘ 𝑅 ) ) ) |
| 23 |
|
tsetid |
⊢ TopSet = Slot ( TopSet ‘ ndx ) |
| 24 |
|
eqid |
⊢ ( TopSet ‘ 𝑅 ) = ( TopSet ‘ 𝑅 ) |
| 25 |
23 24
|
strfvi |
⊢ ( TopSet ‘ 𝑅 ) = ( TopSet ‘ ( I ‘ 𝑅 ) ) |
| 26 |
25
|
a1i |
⊢ ( ⊤ → ( TopSet ‘ 𝑅 ) = ( TopSet ‘ ( I ‘ 𝑅 ) ) ) |
| 27 |
22 26
|
topnpropd |
⊢ ( ⊤ → ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( I ‘ 𝑅 ) ) ) |
| 28 |
27
|
mptru |
⊢ ( TopOpen ‘ 𝑅 ) = ( TopOpen ‘ ( I ‘ 𝑅 ) ) |
| 29 |
17 18 19 28
|
nlmvscn |
⊢ ( ( ringLMod ‘ 𝑅 ) ∈ NrmMod → ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( ( ( TopOpen ‘ 𝑅 ) ×t ( TopOpen ‘ 𝑅 ) ) Cn ( TopOpen ‘ 𝑅 ) ) ) |
| 30 |
16 29
|
syl |
⊢ ( 𝑅 ∈ NrmRing → ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( ( ( TopOpen ‘ 𝑅 ) ×t ( TopOpen ‘ 𝑅 ) ) Cn ( TopOpen ‘ 𝑅 ) ) ) |
| 31 |
|
eqid |
⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) |
| 32 |
31 13
|
istmd |
⊢ ( ( mulGrp ‘ 𝑅 ) ∈ TopMnd ↔ ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ ( mulGrp ‘ 𝑅 ) ∈ TopSp ∧ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) ∈ ( ( ( TopOpen ‘ 𝑅 ) ×t ( TopOpen ‘ 𝑅 ) ) Cn ( TopOpen ‘ 𝑅 ) ) ) ) |
| 33 |
5 15 30 32
|
syl3anbrc |
⊢ ( 𝑅 ∈ NrmRing → ( mulGrp ‘ 𝑅 ) ∈ TopMnd ) |
| 34 |
3
|
istrg |
⊢ ( 𝑅 ∈ TopRing ↔ ( 𝑅 ∈ TopGrp ∧ 𝑅 ∈ Ring ∧ ( mulGrp ‘ 𝑅 ) ∈ TopMnd ) ) |
| 35 |
1 2 33 34
|
syl3anbrc |
⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ TopRing ) |