Step |
Hyp |
Ref |
Expression |
1 |
|
nrgtgp |
|- ( R e. NrmRing -> R e. TopGrp ) |
2 |
|
nrgring |
|- ( R e. NrmRing -> R e. Ring ) |
3 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
4 |
3
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
5 |
2 4
|
syl |
|- ( R e. NrmRing -> ( mulGrp ` R ) e. Mnd ) |
6 |
|
tgptps |
|- ( R e. TopGrp -> R e. TopSp ) |
7 |
1 6
|
syl |
|- ( R e. NrmRing -> R e. TopSp ) |
8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
9 |
|
eqid |
|- ( TopOpen ` R ) = ( TopOpen ` R ) |
10 |
8 9
|
istps |
|- ( R e. TopSp <-> ( TopOpen ` R ) e. ( TopOn ` ( Base ` R ) ) ) |
11 |
7 10
|
sylib |
|- ( R e. NrmRing -> ( TopOpen ` R ) e. ( TopOn ` ( Base ` R ) ) ) |
12 |
3 8
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
13 |
3 9
|
mgptopn |
|- ( TopOpen ` R ) = ( TopOpen ` ( mulGrp ` R ) ) |
14 |
12 13
|
istps |
|- ( ( mulGrp ` R ) e. TopSp <-> ( TopOpen ` R ) e. ( TopOn ` ( Base ` R ) ) ) |
15 |
11 14
|
sylibr |
|- ( R e. NrmRing -> ( mulGrp ` R ) e. TopSp ) |
16 |
|
rlmnlm |
|- ( R e. NrmRing -> ( ringLMod ` R ) e. NrmMod ) |
17 |
|
rlmsca2 |
|- ( _I ` R ) = ( Scalar ` ( ringLMod ` R ) ) |
18 |
|
rlmscaf |
|- ( +f ` ( mulGrp ` R ) ) = ( .sf ` ( ringLMod ` R ) ) |
19 |
|
rlmtopn |
|- ( TopOpen ` R ) = ( TopOpen ` ( ringLMod ` R ) ) |
20 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
21 |
20 8
|
strfvi |
|- ( Base ` R ) = ( Base ` ( _I ` R ) ) |
22 |
21
|
a1i |
|- ( T. -> ( Base ` R ) = ( Base ` ( _I ` R ) ) ) |
23 |
|
tsetid |
|- TopSet = Slot ( TopSet ` ndx ) |
24 |
|
eqid |
|- ( TopSet ` R ) = ( TopSet ` R ) |
25 |
23 24
|
strfvi |
|- ( TopSet ` R ) = ( TopSet ` ( _I ` R ) ) |
26 |
25
|
a1i |
|- ( T. -> ( TopSet ` R ) = ( TopSet ` ( _I ` R ) ) ) |
27 |
22 26
|
topnpropd |
|- ( T. -> ( TopOpen ` R ) = ( TopOpen ` ( _I ` R ) ) ) |
28 |
27
|
mptru |
|- ( TopOpen ` R ) = ( TopOpen ` ( _I ` R ) ) |
29 |
17 18 19 28
|
nlmvscn |
|- ( ( ringLMod ` R ) e. NrmMod -> ( +f ` ( mulGrp ` R ) ) e. ( ( ( TopOpen ` R ) tX ( TopOpen ` R ) ) Cn ( TopOpen ` R ) ) ) |
30 |
16 29
|
syl |
|- ( R e. NrmRing -> ( +f ` ( mulGrp ` R ) ) e. ( ( ( TopOpen ` R ) tX ( TopOpen ` R ) ) Cn ( TopOpen ` R ) ) ) |
31 |
|
eqid |
|- ( +f ` ( mulGrp ` R ) ) = ( +f ` ( mulGrp ` R ) ) |
32 |
31 13
|
istmd |
|- ( ( mulGrp ` R ) e. TopMnd <-> ( ( mulGrp ` R ) e. Mnd /\ ( mulGrp ` R ) e. TopSp /\ ( +f ` ( mulGrp ` R ) ) e. ( ( ( TopOpen ` R ) tX ( TopOpen ` R ) ) Cn ( TopOpen ` R ) ) ) ) |
33 |
5 15 30 32
|
syl3anbrc |
|- ( R e. NrmRing -> ( mulGrp ` R ) e. TopMnd ) |
34 |
3
|
istrg |
|- ( R e. TopRing <-> ( R e. TopGrp /\ R e. Ring /\ ( mulGrp ` R ) e. TopMnd ) ) |
35 |
1 2 33 34
|
syl3anbrc |
|- ( R e. NrmRing -> R e. TopRing ) |