| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nrgtgp |
|- ( R e. NrmRing -> R e. TopGrp ) |
| 2 |
|
nrgring |
|- ( R e. NrmRing -> R e. Ring ) |
| 3 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 4 |
3
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 5 |
2 4
|
syl |
|- ( R e. NrmRing -> ( mulGrp ` R ) e. Mnd ) |
| 6 |
|
tgptps |
|- ( R e. TopGrp -> R e. TopSp ) |
| 7 |
1 6
|
syl |
|- ( R e. NrmRing -> R e. TopSp ) |
| 8 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 9 |
|
eqid |
|- ( TopOpen ` R ) = ( TopOpen ` R ) |
| 10 |
8 9
|
istps |
|- ( R e. TopSp <-> ( TopOpen ` R ) e. ( TopOn ` ( Base ` R ) ) ) |
| 11 |
7 10
|
sylib |
|- ( R e. NrmRing -> ( TopOpen ` R ) e. ( TopOn ` ( Base ` R ) ) ) |
| 12 |
3 8
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 13 |
3 9
|
mgptopn |
|- ( TopOpen ` R ) = ( TopOpen ` ( mulGrp ` R ) ) |
| 14 |
12 13
|
istps |
|- ( ( mulGrp ` R ) e. TopSp <-> ( TopOpen ` R ) e. ( TopOn ` ( Base ` R ) ) ) |
| 15 |
11 14
|
sylibr |
|- ( R e. NrmRing -> ( mulGrp ` R ) e. TopSp ) |
| 16 |
|
rlmnlm |
|- ( R e. NrmRing -> ( ringLMod ` R ) e. NrmMod ) |
| 17 |
|
rlmsca2 |
|- ( _I ` R ) = ( Scalar ` ( ringLMod ` R ) ) |
| 18 |
|
rlmscaf |
|- ( +f ` ( mulGrp ` R ) ) = ( .sf ` ( ringLMod ` R ) ) |
| 19 |
|
rlmtopn |
|- ( TopOpen ` R ) = ( TopOpen ` ( ringLMod ` R ) ) |
| 20 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
| 21 |
20 8
|
strfvi |
|- ( Base ` R ) = ( Base ` ( _I ` R ) ) |
| 22 |
21
|
a1i |
|- ( T. -> ( Base ` R ) = ( Base ` ( _I ` R ) ) ) |
| 23 |
|
tsetid |
|- TopSet = Slot ( TopSet ` ndx ) |
| 24 |
|
eqid |
|- ( TopSet ` R ) = ( TopSet ` R ) |
| 25 |
23 24
|
strfvi |
|- ( TopSet ` R ) = ( TopSet ` ( _I ` R ) ) |
| 26 |
25
|
a1i |
|- ( T. -> ( TopSet ` R ) = ( TopSet ` ( _I ` R ) ) ) |
| 27 |
22 26
|
topnpropd |
|- ( T. -> ( TopOpen ` R ) = ( TopOpen ` ( _I ` R ) ) ) |
| 28 |
27
|
mptru |
|- ( TopOpen ` R ) = ( TopOpen ` ( _I ` R ) ) |
| 29 |
17 18 19 28
|
nlmvscn |
|- ( ( ringLMod ` R ) e. NrmMod -> ( +f ` ( mulGrp ` R ) ) e. ( ( ( TopOpen ` R ) tX ( TopOpen ` R ) ) Cn ( TopOpen ` R ) ) ) |
| 30 |
16 29
|
syl |
|- ( R e. NrmRing -> ( +f ` ( mulGrp ` R ) ) e. ( ( ( TopOpen ` R ) tX ( TopOpen ` R ) ) Cn ( TopOpen ` R ) ) ) |
| 31 |
|
eqid |
|- ( +f ` ( mulGrp ` R ) ) = ( +f ` ( mulGrp ` R ) ) |
| 32 |
31 13
|
istmd |
|- ( ( mulGrp ` R ) e. TopMnd <-> ( ( mulGrp ` R ) e. Mnd /\ ( mulGrp ` R ) e. TopSp /\ ( +f ` ( mulGrp ` R ) ) e. ( ( ( TopOpen ` R ) tX ( TopOpen ` R ) ) Cn ( TopOpen ` R ) ) ) ) |
| 33 |
5 15 30 32
|
syl3anbrc |
|- ( R e. NrmRing -> ( mulGrp ` R ) e. TopMnd ) |
| 34 |
3
|
istrg |
|- ( R e. TopRing <-> ( R e. TopGrp /\ R e. Ring /\ ( mulGrp ` R ) e. TopMnd ) ) |
| 35 |
1 2 33 34
|
syl3anbrc |
|- ( R e. NrmRing -> R e. TopRing ) |