Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
3 |
1 2
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
4 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
5 |
1 4
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
6 |
|
eqid |
|- ( +f ` ( mulGrp ` R ) ) = ( +f ` ( mulGrp ` R ) ) |
7 |
3 5 6
|
plusffval |
|- ( +f ` ( mulGrp ` R ) ) = ( x e. ( Base ` R ) , y e. ( Base ` R ) |-> ( x ( .r ` R ) y ) ) |
8 |
|
rlmbas |
|- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
9 |
|
rlmsca2 |
|- ( _I ` R ) = ( Scalar ` ( ringLMod ` R ) ) |
10 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
11 |
10 2
|
strfvi |
|- ( Base ` R ) = ( Base ` ( _I ` R ) ) |
12 |
|
eqid |
|- ( .sf ` ( ringLMod ` R ) ) = ( .sf ` ( ringLMod ` R ) ) |
13 |
|
rlmvsca |
|- ( .r ` R ) = ( .s ` ( ringLMod ` R ) ) |
14 |
8 9 11 12 13
|
scaffval |
|- ( .sf ` ( ringLMod ` R ) ) = ( x e. ( Base ` R ) , y e. ( Base ` R ) |-> ( x ( .r ` R ) y ) ) |
15 |
7 14
|
eqtr4i |
|- ( +f ` ( mulGrp ` R ) ) = ( .sf ` ( ringLMod ` R ) ) |