| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 2 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 3 |
1 2
|
mgpbas |
|- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 4 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 5 |
1 4
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 6 |
|
eqid |
|- ( +f ` ( mulGrp ` R ) ) = ( +f ` ( mulGrp ` R ) ) |
| 7 |
3 5 6
|
plusffval |
|- ( +f ` ( mulGrp ` R ) ) = ( x e. ( Base ` R ) , y e. ( Base ` R ) |-> ( x ( .r ` R ) y ) ) |
| 8 |
|
rlmbas |
|- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
| 9 |
|
rlmsca2 |
|- ( _I ` R ) = ( Scalar ` ( ringLMod ` R ) ) |
| 10 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
| 11 |
10 2
|
strfvi |
|- ( Base ` R ) = ( Base ` ( _I ` R ) ) |
| 12 |
|
eqid |
|- ( .sf ` ( ringLMod ` R ) ) = ( .sf ` ( ringLMod ` R ) ) |
| 13 |
|
rlmvsca |
|- ( .r ` R ) = ( .s ` ( ringLMod ` R ) ) |
| 14 |
8 9 11 12 13
|
scaffval |
|- ( .sf ` ( ringLMod ` R ) ) = ( x e. ( Base ` R ) , y e. ( Base ` R ) |-> ( x ( .r ` R ) y ) ) |
| 15 |
7 14
|
eqtr4i |
|- ( +f ` ( mulGrp ` R ) ) = ( .sf ` ( ringLMod ` R ) ) |