| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
| 2 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 3 |
1 2
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 4 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 5 |
1 4
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 6 |
|
eqid |
⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) |
| 7 |
3 5 6
|
plusffval |
⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 8 |
|
rlmbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) ) |
| 9 |
|
rlmsca2 |
⊢ ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) ) |
| 10 |
|
baseid |
⊢ Base = Slot ( Base ‘ ndx ) |
| 11 |
10 2
|
strfvi |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( I ‘ 𝑅 ) ) |
| 12 |
|
eqid |
⊢ ( ·sf ‘ ( ringLMod ‘ 𝑅 ) ) = ( ·sf ‘ ( ringLMod ‘ 𝑅 ) ) |
| 13 |
|
rlmvsca |
⊢ ( .r ‘ 𝑅 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝑅 ) ) |
| 14 |
8 9 11 12 13
|
scaffval |
⊢ ( ·sf ‘ ( ringLMod ‘ 𝑅 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ) |
| 15 |
7 14
|
eqtr4i |
⊢ ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( ·sf ‘ ( ringLMod ‘ 𝑅 ) ) |