Metamath Proof Explorer


Theorem rlmscaf

Description: Functionalized scalar multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Assertion rlmscaf ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( ·sf ‘ ( ringLMod ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 eqid ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 )
2 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
3 1 2 mgpbas ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) )
4 eqid ( .r𝑅 ) = ( .r𝑅 )
5 1 4 mgpplusg ( .r𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) )
6 eqid ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) )
7 3 5 6 plusffval ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑥 ( .r𝑅 ) 𝑦 ) )
8 rlmbas ( Base ‘ 𝑅 ) = ( Base ‘ ( ringLMod ‘ 𝑅 ) )
9 rlmsca2 ( I ‘ 𝑅 ) = ( Scalar ‘ ( ringLMod ‘ 𝑅 ) )
10 baseid Base = Slot ( Base ‘ ndx )
11 10 2 strfvi ( Base ‘ 𝑅 ) = ( Base ‘ ( I ‘ 𝑅 ) )
12 eqid ( ·sf ‘ ( ringLMod ‘ 𝑅 ) ) = ( ·sf ‘ ( ringLMod ‘ 𝑅 ) )
13 rlmvsca ( .r𝑅 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝑅 ) )
14 8 9 11 12 13 scaffval ( ·sf ‘ ( ringLMod ‘ 𝑅 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑅 ) ↦ ( 𝑥 ( .r𝑅 ) 𝑦 ) )
15 7 14 eqtr4i ( +𝑓 ‘ ( mulGrp ‘ 𝑅 ) ) = ( ·sf ‘ ( ringLMod ‘ 𝑅 ) )