Step |
Hyp |
Ref |
Expression |
1 |
|
scaffval.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
scaffval.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
scaffval.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
4 |
|
scaffval.a |
⊢ ∙ = ( ·sf ‘ 𝑊 ) |
5 |
|
scaffval.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) |
7 |
6 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
8 |
7
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = ( Base ‘ 𝐹 ) ) |
9 |
8 3
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ ( Scalar ‘ 𝑤 ) ) = 𝐾 ) |
10 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
11 |
10 1
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝐵 ) |
12 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = ( ·𝑠 ‘ 𝑊 ) ) |
13 |
12 5
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ·𝑠 ‘ 𝑤 ) = · ) |
14 |
13
|
oveqd |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
15 |
9 11 14
|
mpoeq123dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) = ( 𝑥 ∈ 𝐾 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 · 𝑦 ) ) ) |
16 |
|
df-scaf |
⊢ ·sf = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑤 ) ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ ( 𝑥 ( ·𝑠 ‘ 𝑤 ) 𝑦 ) ) ) |
17 |
3
|
fvexi |
⊢ 𝐾 ∈ V |
18 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
19 |
5
|
fvexi |
⊢ · ∈ V |
20 |
19
|
rnex |
⊢ ran · ∈ V |
21 |
|
p0ex |
⊢ { ∅ } ∈ V |
22 |
20 21
|
unex |
⊢ ( ran · ∪ { ∅ } ) ∈ V |
23 |
|
df-ov |
⊢ ( 𝑥 · 𝑦 ) = ( · ‘ 〈 𝑥 , 𝑦 〉 ) |
24 |
|
fvrn0 |
⊢ ( · ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( ran · ∪ { ∅ } ) |
25 |
23 24
|
eqeltri |
⊢ ( 𝑥 · 𝑦 ) ∈ ( ran · ∪ { ∅ } ) |
26 |
25
|
rgen2w |
⊢ ∀ 𝑥 ∈ 𝐾 ∀ 𝑦 ∈ 𝐵 ( 𝑥 · 𝑦 ) ∈ ( ran · ∪ { ∅ } ) |
27 |
17 18 22 26
|
mpoexw |
⊢ ( 𝑥 ∈ 𝐾 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 · 𝑦 ) ) ∈ V |
28 |
15 16 27
|
fvmpt |
⊢ ( 𝑊 ∈ V → ( ·sf ‘ 𝑊 ) = ( 𝑥 ∈ 𝐾 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 · 𝑦 ) ) ) |
29 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( ·sf ‘ 𝑊 ) = ∅ ) |
30 |
|
fvprc |
⊢ ( ¬ 𝑊 ∈ V → ( Base ‘ 𝑊 ) = ∅ ) |
31 |
1 30
|
syl5eq |
⊢ ( ¬ 𝑊 ∈ V → 𝐵 = ∅ ) |
32 |
31
|
olcd |
⊢ ( ¬ 𝑊 ∈ V → ( 𝐾 = ∅ ∨ 𝐵 = ∅ ) ) |
33 |
|
0mpo0 |
⊢ ( ( 𝐾 = ∅ ∨ 𝐵 = ∅ ) → ( 𝑥 ∈ 𝐾 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 · 𝑦 ) ) = ∅ ) |
34 |
32 33
|
syl |
⊢ ( ¬ 𝑊 ∈ V → ( 𝑥 ∈ 𝐾 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 · 𝑦 ) ) = ∅ ) |
35 |
29 34
|
eqtr4d |
⊢ ( ¬ 𝑊 ∈ V → ( ·sf ‘ 𝑊 ) = ( 𝑥 ∈ 𝐾 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 · 𝑦 ) ) ) |
36 |
28 35
|
pm2.61i |
⊢ ( ·sf ‘ 𝑊 ) = ( 𝑥 ∈ 𝐾 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 · 𝑦 ) ) |
37 |
4 36
|
eqtri |
⊢ ∙ = ( 𝑥 ∈ 𝐾 , 𝑦 ∈ 𝐵 ↦ ( 𝑥 · 𝑦 ) ) |