Metamath Proof Explorer


Theorem rlmscaf

Description: Functionalized scalar multiplication in the ring module. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Assertion rlmscaf + 𝑓 mulGrp R = 𝑠𝑓 ringLMod R

Proof

Step Hyp Ref Expression
1 eqid mulGrp R = mulGrp R
2 eqid Base R = Base R
3 1 2 mgpbas Base R = Base mulGrp R
4 eqid R = R
5 1 4 mgpplusg R = + mulGrp R
6 eqid + 𝑓 mulGrp R = + 𝑓 mulGrp R
7 3 5 6 plusffval + 𝑓 mulGrp R = x Base R , y Base R x R y
8 rlmbas Base R = Base ringLMod R
9 rlmsca2 I R = Scalar ringLMod R
10 baseid Base = Slot Base ndx
11 10 2 strfvi Base R = Base I R
12 eqid 𝑠𝑓 ringLMod R = 𝑠𝑓 ringLMod R
13 rlmvsca R = ringLMod R
14 8 9 11 12 13 scaffval 𝑠𝑓 ringLMod R = x Base R , y Base R x R y
15 7 14 eqtr4i + 𝑓 mulGrp R = 𝑠𝑓 ringLMod R