| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nlmvscn.f |
|- F = ( Scalar ` W ) |
| 2 |
|
nlmvscn.sf |
|- .x. = ( .sf ` W ) |
| 3 |
|
nlmvscn.j |
|- J = ( TopOpen ` W ) |
| 4 |
|
nlmvscn.kf |
|- K = ( TopOpen ` F ) |
| 5 |
|
nlmlmod |
|- ( W e. NrmMod -> W e. LMod ) |
| 6 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 7 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
| 8 |
6 1 7 2
|
lmodscaf |
|- ( W e. LMod -> .x. : ( ( Base ` F ) X. ( Base ` W ) ) --> ( Base ` W ) ) |
| 9 |
5 8
|
syl |
|- ( W e. NrmMod -> .x. : ( ( Base ` F ) X. ( Base ` W ) ) --> ( Base ` W ) ) |
| 10 |
|
eqid |
|- ( dist ` W ) = ( dist ` W ) |
| 11 |
|
eqid |
|- ( dist ` F ) = ( dist ` F ) |
| 12 |
|
eqid |
|- ( norm ` W ) = ( norm ` W ) |
| 13 |
|
eqid |
|- ( norm ` F ) = ( norm ` F ) |
| 14 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
| 15 |
|
eqid |
|- ( ( r / 2 ) / ( ( ( norm ` F ) ` x ) + 1 ) ) = ( ( r / 2 ) / ( ( ( norm ` F ) ` x ) + 1 ) ) |
| 16 |
|
eqid |
|- ( ( r / 2 ) / ( ( ( norm ` W ) ` y ) + ( ( r / 2 ) / ( ( ( norm ` F ) ` x ) + 1 ) ) ) ) = ( ( r / 2 ) / ( ( ( norm ` W ) ` y ) + ( ( r / 2 ) / ( ( ( norm ` F ) ` x ) + 1 ) ) ) ) |
| 17 |
|
simpll |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> W e. NrmMod ) |
| 18 |
|
simpr |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> r e. RR+ ) |
| 19 |
|
simplrl |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> x e. ( Base ` F ) ) |
| 20 |
|
simplrr |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> y e. ( Base ` W ) ) |
| 21 |
1 6 7 10 11 12 13 14 15 16 17 18 19 20
|
nlmvscnlem1 |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ r e. RR+ ) -> E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) |
| 22 |
21
|
ralrimiva |
|- ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) -> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) |
| 23 |
|
simplrl |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> x e. ( Base ` F ) ) |
| 24 |
|
simprl |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> z e. ( Base ` F ) ) |
| 25 |
23 24
|
ovresd |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) = ( x ( dist ` F ) z ) ) |
| 26 |
25
|
breq1d |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s <-> ( x ( dist ` F ) z ) < s ) ) |
| 27 |
|
simplrr |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> y e. ( Base ` W ) ) |
| 28 |
|
simprr |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> w e. ( Base ` W ) ) |
| 29 |
27 28
|
ovresd |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) = ( y ( dist ` W ) w ) ) |
| 30 |
29
|
breq1d |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s <-> ( y ( dist ` W ) w ) < s ) ) |
| 31 |
26 30
|
anbi12d |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) <-> ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) ) ) |
| 32 |
6 1 7 2 14
|
scafval |
|- ( ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) -> ( x .x. y ) = ( x ( .s ` W ) y ) ) |
| 33 |
32
|
ad2antlr |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( x .x. y ) = ( x ( .s ` W ) y ) ) |
| 34 |
6 1 7 2 14
|
scafval |
|- ( ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) -> ( z .x. w ) = ( z ( .s ` W ) w ) ) |
| 35 |
34
|
adantl |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( z .x. w ) = ( z ( .s ` W ) w ) ) |
| 36 |
33 35
|
oveq12d |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) = ( ( x ( .s ` W ) y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z ( .s ` W ) w ) ) ) |
| 37 |
5
|
ad2antrr |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> W e. LMod ) |
| 38 |
6 1 14 7
|
lmodvscl |
|- ( ( W e. LMod /\ x e. ( Base ` F ) /\ y e. ( Base ` W ) ) -> ( x ( .s ` W ) y ) e. ( Base ` W ) ) |
| 39 |
37 23 27 38
|
syl3anc |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( x ( .s ` W ) y ) e. ( Base ` W ) ) |
| 40 |
6 1 14 7
|
lmodvscl |
|- ( ( W e. LMod /\ z e. ( Base ` F ) /\ w e. ( Base ` W ) ) -> ( z ( .s ` W ) w ) e. ( Base ` W ) ) |
| 41 |
37 24 28 40
|
syl3anc |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( z ( .s ` W ) w ) e. ( Base ` W ) ) |
| 42 |
39 41
|
ovresd |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( x ( .s ` W ) y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z ( .s ` W ) w ) ) = ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) ) |
| 43 |
36 42
|
eqtrd |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) = ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) ) |
| 44 |
43
|
breq1d |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r <-> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) |
| 45 |
31 44
|
imbi12d |
|- ( ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) /\ ( z e. ( Base ` F ) /\ w e. ( Base ` W ) ) ) -> ( ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) <-> ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) ) |
| 46 |
45
|
2ralbidva |
|- ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) -> ( A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) <-> A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) ) |
| 47 |
46
|
rexbidv |
|- ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) -> ( E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) <-> E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) ) |
| 48 |
47
|
ralbidv |
|- ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) -> ( A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) <-> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( dist ` F ) z ) < s /\ ( y ( dist ` W ) w ) < s ) -> ( ( x ( .s ` W ) y ) ( dist ` W ) ( z ( .s ` W ) w ) ) < r ) ) ) |
| 49 |
22 48
|
mpbird |
|- ( ( W e. NrmMod /\ ( x e. ( Base ` F ) /\ y e. ( Base ` W ) ) ) -> A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) ) |
| 50 |
49
|
ralrimivva |
|- ( W e. NrmMod -> A. x e. ( Base ` F ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) ) |
| 51 |
1
|
nlmngp2 |
|- ( W e. NrmMod -> F e. NrmGrp ) |
| 52 |
|
ngpms |
|- ( F e. NrmGrp -> F e. MetSp ) |
| 53 |
51 52
|
syl |
|- ( W e. NrmMod -> F e. MetSp ) |
| 54 |
|
msxms |
|- ( F e. MetSp -> F e. *MetSp ) |
| 55 |
|
eqid |
|- ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) = ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) |
| 56 |
7 55
|
xmsxmet |
|- ( F e. *MetSp -> ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) e. ( *Met ` ( Base ` F ) ) ) |
| 57 |
53 54 56
|
3syl |
|- ( W e. NrmMod -> ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) e. ( *Met ` ( Base ` F ) ) ) |
| 58 |
|
nlmngp |
|- ( W e. NrmMod -> W e. NrmGrp ) |
| 59 |
|
ngpms |
|- ( W e. NrmGrp -> W e. MetSp ) |
| 60 |
58 59
|
syl |
|- ( W e. NrmMod -> W e. MetSp ) |
| 61 |
|
msxms |
|- ( W e. MetSp -> W e. *MetSp ) |
| 62 |
|
eqid |
|- ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) = ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) |
| 63 |
6 62
|
xmsxmet |
|- ( W e. *MetSp -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) |
| 64 |
60 61 63
|
3syl |
|- ( W e. NrmMod -> ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) |
| 65 |
|
eqid |
|- ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) = ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) |
| 66 |
|
eqid |
|- ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) |
| 67 |
65 66 66
|
txmetcn |
|- ( ( ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) e. ( *Met ` ( Base ` F ) ) /\ ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) /\ ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) e. ( *Met ` ( Base ` W ) ) ) -> ( .x. e. ( ( ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) <-> ( .x. : ( ( Base ` F ) X. ( Base ` W ) ) --> ( Base ` W ) /\ A. x e. ( Base ` F ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) ) ) ) |
| 68 |
57 64 64 67
|
syl3anc |
|- ( W e. NrmMod -> ( .x. e. ( ( ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) <-> ( .x. : ( ( Base ` F ) X. ( Base ` W ) ) --> ( Base ` W ) /\ A. x e. ( Base ` F ) A. y e. ( Base ` W ) A. r e. RR+ E. s e. RR+ A. z e. ( Base ` F ) A. w e. ( Base ` W ) ( ( ( x ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) z ) < s /\ ( y ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) w ) < s ) -> ( ( x .x. y ) ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ( z .x. w ) ) < r ) ) ) ) |
| 69 |
9 50 68
|
mpbir2and |
|- ( W e. NrmMod -> .x. e. ( ( ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) ) |
| 70 |
4 7 55
|
mstopn |
|- ( F e. MetSp -> K = ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) ) |
| 71 |
53 70
|
syl |
|- ( W e. NrmMod -> K = ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) ) |
| 72 |
3 6 62
|
mstopn |
|- ( W e. MetSp -> J = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) |
| 73 |
60 72
|
syl |
|- ( W e. NrmMod -> J = ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) |
| 74 |
71 73
|
oveq12d |
|- ( W e. NrmMod -> ( K tX J ) = ( ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) ) |
| 75 |
74 73
|
oveq12d |
|- ( W e. NrmMod -> ( ( K tX J ) Cn J ) = ( ( ( MetOpen ` ( ( dist ` F ) |` ( ( Base ` F ) X. ( Base ` F ) ) ) ) tX ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) Cn ( MetOpen ` ( ( dist ` W ) |` ( ( Base ` W ) X. ( Base ` W ) ) ) ) ) ) |
| 76 |
69 75
|
eleqtrrd |
|- ( W e. NrmMod -> .x. e. ( ( K tX J ) Cn J ) ) |