Description: The scalar component of a left module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nlmnrg.1 | |- F = ( Scalar ` W ) |
|
| Assertion | nlmngp2 | |- ( W e. NrmMod -> F e. NrmGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlmnrg.1 | |- F = ( Scalar ` W ) |
|
| 2 | 1 | nlmnrg | |- ( W e. NrmMod -> F e. NrmRing ) |
| 3 | nrgngp | |- ( F e. NrmRing -> F e. NrmGrp ) |
|
| 4 | 2 3 | syl | |- ( W e. NrmMod -> F e. NrmGrp ) |