Description: The scalar component of a left module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nlmnrg.1 | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| Assertion | nlmngp2 | ⊢ ( 𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nlmnrg.1 | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | 1 | nlmnrg | ⊢ ( 𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing ) |
| 3 | nrgngp | ⊢ ( 𝐹 ∈ NrmRing → 𝐹 ∈ NrmGrp ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp ) |