Metamath Proof Explorer


Theorem nlmnrg

Description: The scalar component of a left module is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypothesis nlmnrg.1 𝐹 = ( Scalar ‘ 𝑊 )
Assertion nlmnrg ( 𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing )

Proof

Step Hyp Ref Expression
1 nlmnrg.1 𝐹 = ( Scalar ‘ 𝑊 )
2 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
3 eqid ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 )
4 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
5 eqid ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 )
6 eqid ( norm ‘ 𝐹 ) = ( norm ‘ 𝐹 )
7 2 3 4 1 5 6 isnlm ( 𝑊 ∈ NrmMod ↔ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( ·𝑠𝑊 ) 𝑦 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) )
8 7 simplbi ( 𝑊 ∈ NrmMod → ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing ) )
9 8 simp3d ( 𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing )