Metamath Proof Explorer


Theorem nlmngp2

Description: The scalar component of a left module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypothesis nlmnrg.1 F = Scalar W
Assertion nlmngp2 W NrmMod F NrmGrp

Proof

Step Hyp Ref Expression
1 nlmnrg.1 F = Scalar W
2 1 nlmnrg W NrmMod F NrmRing
3 nrgngp F NrmRing F NrmGrp
4 2 3 syl W NrmMod F NrmGrp