| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nlmvscn.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
nlmvscn.sf |
⊢ · = ( ·sf ‘ 𝑊 ) |
| 3 |
|
nlmvscn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
| 4 |
|
nlmvscn.kf |
⊢ 𝐾 = ( TopOpen ‘ 𝐹 ) |
| 5 |
|
nlmlmod |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
| 8 |
6 1 7 2
|
lmodscaf |
⊢ ( 𝑊 ∈ LMod → · : ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) ) |
| 9 |
5 8
|
syl |
⊢ ( 𝑊 ∈ NrmMod → · : ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) ) |
| 10 |
|
eqid |
⊢ ( dist ‘ 𝑊 ) = ( dist ‘ 𝑊 ) |
| 11 |
|
eqid |
⊢ ( dist ‘ 𝐹 ) = ( dist ‘ 𝐹 ) |
| 12 |
|
eqid |
⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) |
| 13 |
|
eqid |
⊢ ( norm ‘ 𝐹 ) = ( norm ‘ 𝐹 ) |
| 14 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 15 |
|
eqid |
⊢ ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝐹 ) ‘ 𝑥 ) + 1 ) ) = ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝐹 ) ‘ 𝑥 ) + 1 ) ) |
| 16 |
|
eqid |
⊢ ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) + ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝐹 ) ‘ 𝑥 ) + 1 ) ) ) ) = ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) + ( ( 𝑟 / 2 ) / ( ( ( norm ‘ 𝐹 ) ‘ 𝑥 ) + 1 ) ) ) ) |
| 17 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑊 ∈ NrmMod ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) |
| 19 |
|
simplrl |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑥 ∈ ( Base ‘ 𝐹 ) ) |
| 20 |
|
simplrr |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 21 |
1 6 7 10 11 12 13 14 15 16 17 18 19 20
|
nlmvscnlem1 |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) < 𝑟 ) ) |
| 22 |
21
|
ralrimiva |
⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) < 𝑟 ) ) |
| 23 |
|
simplrl |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐹 ) ) |
| 24 |
|
simprl |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐹 ) ) |
| 25 |
23 24
|
ovresd |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) = ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) ) |
| 26 |
25
|
breq1d |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ↔ ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) < 𝑠 ) ) |
| 27 |
|
simplrr |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 28 |
|
simprr |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑤 ∈ ( Base ‘ 𝑊 ) ) |
| 29 |
27 28
|
ovresd |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) = ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) ) |
| 30 |
29
|
breq1d |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ↔ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) ) |
| 31 |
26 30
|
anbi12d |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) ↔ ( ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) ) ) |
| 32 |
6 1 7 2 14
|
scafval |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 · 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) |
| 33 |
32
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 · 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) |
| 34 |
6 1 7 2 14
|
scafval |
⊢ ( ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑧 · 𝑤 ) = ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) |
| 35 |
34
|
adantl |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑧 · 𝑤 ) = ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) |
| 36 |
33 35
|
oveq12d |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) |
| 37 |
5
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → 𝑊 ∈ LMod ) |
| 38 |
6 1 14 7
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 39 |
37 23 27 38
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ) |
| 40 |
6 1 14 7
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ) |
| 41 |
37 24 28 40
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ∈ ( Base ‘ 𝑊 ) ) |
| 42 |
39 41
|
ovresd |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) |
| 43 |
36 42
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) ) |
| 44 |
43
|
breq1d |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ↔ ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) < 𝑟 ) ) |
| 45 |
31 44
|
imbi12d |
⊢ ( ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) ∧ ( 𝑧 ∈ ( Base ‘ 𝐹 ) ∧ 𝑤 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ) ↔ ( ( ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) < 𝑟 ) ) ) |
| 46 |
45
|
2ralbidva |
⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) < 𝑟 ) ) ) |
| 47 |
46
|
rexbidv |
⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ) ↔ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) < 𝑟 ) ) ) |
| 48 |
47
|
ralbidv |
⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ) ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( dist ‘ 𝐹 ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( dist ‘ 𝑊 ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( dist ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑤 ) ) < 𝑟 ) ) ) |
| 49 |
22 48
|
mpbird |
⊢ ( ( 𝑊 ∈ NrmMod ∧ ( 𝑥 ∈ ( Base ‘ 𝐹 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ) ) |
| 50 |
49
|
ralrimivva |
⊢ ( 𝑊 ∈ NrmMod → ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ) ) |
| 51 |
1
|
nlmngp2 |
⊢ ( 𝑊 ∈ NrmMod → 𝐹 ∈ NrmGrp ) |
| 52 |
|
ngpms |
⊢ ( 𝐹 ∈ NrmGrp → 𝐹 ∈ MetSp ) |
| 53 |
51 52
|
syl |
⊢ ( 𝑊 ∈ NrmMod → 𝐹 ∈ MetSp ) |
| 54 |
|
msxms |
⊢ ( 𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp ) |
| 55 |
|
eqid |
⊢ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) = ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) |
| 56 |
7 55
|
xmsxmet |
⊢ ( 𝐹 ∈ ∞MetSp → ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐹 ) ) ) |
| 57 |
53 54 56
|
3syl |
⊢ ( 𝑊 ∈ NrmMod → ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐹 ) ) ) |
| 58 |
|
nlmngp |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) |
| 59 |
|
ngpms |
⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ MetSp ) |
| 60 |
58 59
|
syl |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ MetSp ) |
| 61 |
|
msxms |
⊢ ( 𝑊 ∈ MetSp → 𝑊 ∈ ∞MetSp ) |
| 62 |
|
eqid |
⊢ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) = ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) |
| 63 |
6 62
|
xmsxmet |
⊢ ( 𝑊 ∈ ∞MetSp → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ) |
| 64 |
60 61 63
|
3syl |
⊢ ( 𝑊 ∈ NrmMod → ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ) |
| 65 |
|
eqid |
⊢ ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) |
| 66 |
|
eqid |
⊢ ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) |
| 67 |
65 66 66
|
txmetcn |
⊢ ( ( ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐹 ) ) ∧ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ∧ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝑊 ) ) ) → ( · ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) ↔ ( · : ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ) ) ) ) |
| 68 |
57 64 64 67
|
syl3anc |
⊢ ( 𝑊 ∈ NrmMod → ( · ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) ↔ ( · : ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝑊 ) ) ⟶ ( Base ‘ 𝑊 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐹 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑧 ∈ ( Base ‘ 𝐹 ) ∀ 𝑤 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑥 ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) 𝑧 ) < 𝑠 ∧ ( 𝑦 ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) 𝑤 ) < 𝑠 ) → ( ( 𝑥 · 𝑦 ) ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ( 𝑧 · 𝑤 ) ) < 𝑟 ) ) ) ) |
| 69 |
9 50 68
|
mpbir2and |
⊢ ( 𝑊 ∈ NrmMod → · ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) ) |
| 70 |
4 7 55
|
mstopn |
⊢ ( 𝐹 ∈ MetSp → 𝐾 = ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) ) |
| 71 |
53 70
|
syl |
⊢ ( 𝑊 ∈ NrmMod → 𝐾 = ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) ) |
| 72 |
3 6 62
|
mstopn |
⊢ ( 𝑊 ∈ MetSp → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) |
| 73 |
60 72
|
syl |
⊢ ( 𝑊 ∈ NrmMod → 𝐽 = ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) |
| 74 |
71 73
|
oveq12d |
⊢ ( 𝑊 ∈ NrmMod → ( 𝐾 ×t 𝐽 ) = ( ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) ) |
| 75 |
74 73
|
oveq12d |
⊢ ( 𝑊 ∈ NrmMod → ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) = ( ( ( MetOpen ‘ ( ( dist ‘ 𝐹 ) ↾ ( ( Base ‘ 𝐹 ) × ( Base ‘ 𝐹 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝑊 ) ↾ ( ( Base ‘ 𝑊 ) × ( Base ‘ 𝑊 ) ) ) ) ) ) |
| 76 |
69 75
|
eleqtrrd |
⊢ ( 𝑊 ∈ NrmMod → · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |