| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nlmngp |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) |
| 2 |
|
nlmlmod |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod ) |
| 3 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
| 4 |
2 3
|
syl |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ Abel ) |
| 5 |
|
ngptgp |
⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑊 ∈ Abel ) → 𝑊 ∈ TopGrp ) |
| 6 |
1 4 5
|
syl2anc |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ TopGrp ) |
| 7 |
|
tgptmd |
⊢ ( 𝑊 ∈ TopGrp → 𝑊 ∈ TopMnd ) |
| 8 |
6 7
|
syl |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ TopMnd ) |
| 9 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 10 |
9
|
nlmnrg |
⊢ ( 𝑊 ∈ NrmMod → ( Scalar ‘ 𝑊 ) ∈ NrmRing ) |
| 11 |
|
nrgtrg |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ NrmRing → ( Scalar ‘ 𝑊 ) ∈ TopRing ) |
| 12 |
10 11
|
syl |
⊢ ( 𝑊 ∈ NrmMod → ( Scalar ‘ 𝑊 ) ∈ TopRing ) |
| 13 |
8 2 12
|
3jca |
⊢ ( 𝑊 ∈ NrmMod → ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ TopRing ) ) |
| 14 |
|
eqid |
⊢ ( ·sf ‘ 𝑊 ) = ( ·sf ‘ 𝑊 ) |
| 15 |
|
eqid |
⊢ ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝑊 ) |
| 16 |
|
eqid |
⊢ ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) = ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) |
| 17 |
9 14 15 16
|
nlmvscn |
⊢ ( 𝑊 ∈ NrmMod → ( ·sf ‘ 𝑊 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) ×t ( TopOpen ‘ 𝑊 ) ) Cn ( TopOpen ‘ 𝑊 ) ) ) |
| 18 |
14 15 9 16
|
istlm |
⊢ ( 𝑊 ∈ TopMod ↔ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ ( Scalar ‘ 𝑊 ) ∈ TopRing ) ∧ ( ·sf ‘ 𝑊 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) ×t ( TopOpen ‘ 𝑊 ) ) Cn ( TopOpen ‘ 𝑊 ) ) ) ) |
| 19 |
13 17 18
|
sylanbrc |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ TopMod ) |