Description: A normed vector space is just a normed module which is algebraically a vector space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isnvc | ⊢ ( 𝑊 ∈ NrmVec ↔ ( 𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nvc | ⊢ NrmVec = ( NrmMod ∩ LVec ) | |
| 2 | 1 | elin2 | ⊢ ( 𝑊 ∈ NrmVec ↔ ( 𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec ) ) |