Metamath Proof Explorer


Theorem ngptgp

Description: A normed abelian group is a topological group (with the topology induced by the metric induced by the norm). (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Assertion ngptgp ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → 𝐺 ∈ TopGrp )

Proof

Step Hyp Ref Expression
1 ngpgrp ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp )
2 1 adantr ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → 𝐺 ∈ Grp )
3 ngpms ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp )
4 3 adantr ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → 𝐺 ∈ MetSp )
5 mstps ( 𝐺 ∈ MetSp → 𝐺 ∈ TopSp )
6 4 5 syl ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → 𝐺 ∈ TopSp )
7 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
8 eqid ( -g𝐺 ) = ( -g𝐺 )
9 7 8 grpsubf ( 𝐺 ∈ Grp → ( -g𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) )
10 2 9 syl ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ( -g𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) )
11 rphalfcl ( 𝑧 ∈ ℝ+ → ( 𝑧 / 2 ) ∈ ℝ+ )
12 simplll ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) )
13 12 4 syl ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → 𝐺 ∈ MetSp )
14 simpllr ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) )
15 14 simpld ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) )
16 simprl ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑢 ∈ ( Base ‘ 𝐺 ) )
17 eqid ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 )
18 7 17 mscl ( ( 𝐺 ∈ MetSp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) ∈ ℝ )
19 13 15 16 18 syl3anc ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) ∈ ℝ )
20 14 simprd ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) )
21 simprr ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑣 ∈ ( Base ‘ 𝐺 ) )
22 7 17 mscl ( ( 𝐺 ∈ MetSp ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ∈ ℝ )
23 13 20 21 22 syl3anc ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ∈ ℝ )
24 rpre ( 𝑧 ∈ ℝ+𝑧 ∈ ℝ )
25 24 ad2antlr ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → 𝑧 ∈ ℝ )
26 lt2halves ( ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) ∈ ℝ ∧ ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) < ( 𝑧 / 2 ) ) → ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) )
27 19 23 25 26 syl3anc ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) < ( 𝑧 / 2 ) ) → ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) )
28 12 2 syl ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → 𝐺 ∈ Grp )
29 7 8 grpsubcl ( ( 𝐺 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( -g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) )
30 28 15 20 29 syl3anc ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( -g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) )
31 7 8 grpsubcl ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ( -g𝐺 ) 𝑣 ) ∈ ( Base ‘ 𝐺 ) )
32 28 16 21 31 syl3anc ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑢 ( -g𝐺 ) 𝑣 ) ∈ ( Base ‘ 𝐺 ) )
33 7 8 grpsubcl ( ( 𝐺 ∈ Grp ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ( -g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) )
34 28 16 20 33 syl3anc ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑢 ( -g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) )
35 7 17 mstri ( ( 𝐺 ∈ MetSp ∧ ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑢 ( -g𝐺 ) 𝑣 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑢 ( -g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) ≤ ( ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑦 ) ) + ( ( 𝑢 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) ) )
36 13 30 32 34 35 syl13anc ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) ≤ ( ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑦 ) ) + ( ( 𝑢 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) ) )
37 12 simpld ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → 𝐺 ∈ NrmGrp )
38 7 8 17 ngpsubcan ( ( 𝐺 ∈ NrmGrp ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑦 ) ) = ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) )
39 37 15 16 20 38 syl13anc ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑦 ) ) = ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) )
40 eqid ( +g𝐺 ) = ( +g𝐺 )
41 eqid ( invg𝐺 ) = ( invg𝐺 )
42 7 40 41 8 grpsubval ( ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ( -g𝐺 ) 𝑦 ) = ( 𝑢 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) )
43 16 20 42 syl2anc ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑢 ( -g𝐺 ) 𝑦 ) = ( 𝑢 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) )
44 7 40 41 8 grpsubval ( ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑢 ( -g𝐺 ) 𝑣 ) = ( 𝑢 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑣 ) ) )
45 44 adantl ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑢 ( -g𝐺 ) 𝑣 ) = ( 𝑢 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑣 ) ) )
46 43 45 oveq12d ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) = ( ( 𝑢 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) ( dist ‘ 𝐺 ) ( 𝑢 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑣 ) ) ) )
47 7 41 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) )
48 28 20 47 syl2anc ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( invg𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) )
49 7 41 grpinvcl ( ( 𝐺 ∈ Grp ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) → ( ( invg𝐺 ) ‘ 𝑣 ) ∈ ( Base ‘ 𝐺 ) )
50 28 21 49 syl2anc ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( invg𝐺 ) ‘ 𝑣 ) ∈ ( Base ‘ 𝐺 ) )
51 7 40 17 ngplcan ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( ( ( invg𝐺 ) ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ( ( invg𝐺 ) ‘ 𝑣 ) ∈ ( Base ‘ 𝐺 ) ∧ 𝑢 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) ( dist ‘ 𝐺 ) ( 𝑢 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑣 ) ) ) = ( ( ( invg𝐺 ) ‘ 𝑦 ) ( dist ‘ 𝐺 ) ( ( invg𝐺 ) ‘ 𝑣 ) ) )
52 12 48 50 16 51 syl13anc ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑦 ) ) ( dist ‘ 𝐺 ) ( 𝑢 ( +g𝐺 ) ( ( invg𝐺 ) ‘ 𝑣 ) ) ) = ( ( ( invg𝐺 ) ‘ 𝑦 ) ( dist ‘ 𝐺 ) ( ( invg𝐺 ) ‘ 𝑣 ) ) )
53 7 41 17 ngpinvds ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( invg𝐺 ) ‘ 𝑦 ) ( dist ‘ 𝐺 ) ( ( invg𝐺 ) ‘ 𝑣 ) ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) )
54 12 20 21 53 syl12anc ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( invg𝐺 ) ‘ 𝑦 ) ( dist ‘ 𝐺 ) ( ( invg𝐺 ) ‘ 𝑣 ) ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) )
55 46 52 54 3eqtrd ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑢 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) )
56 39 55 oveq12d ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑦 ) ) + ( ( 𝑢 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) ) = ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) )
57 36 56 breqtrd ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) ≤ ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) )
58 7 17 mscl ( ( 𝐺 ∈ MetSp ∧ ( 𝑥 ( -g𝐺 ) 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝑢 ( -g𝐺 ) 𝑣 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) ∈ ℝ )
59 13 30 32 58 syl3anc ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) ∈ ℝ )
60 19 23 readdcld ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) ∈ ℝ )
61 lelttr ( ( ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) ∈ ℝ ∧ ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) ∈ ℝ ∧ 𝑧 ∈ ℝ ) → ( ( ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) ≤ ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) ∧ ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) )
62 59 60 25 61 syl3anc ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) ≤ ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) ∧ ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) < 𝑧 ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) )
63 57 62 mpand ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) + ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) ) < 𝑧 → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) )
64 27 63 syld ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) < ( 𝑧 / 2 ) ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) )
65 15 16 ovresd ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) = ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) )
66 65 breq1d ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ↔ ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) < ( 𝑧 / 2 ) ) )
67 20 21 ovresd ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) = ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) )
68 67 breq1d ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ↔ ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) < ( 𝑧 / 2 ) ) )
69 66 68 anbi12d ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ) ↔ ( ( 𝑥 ( dist ‘ 𝐺 ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( dist ‘ 𝐺 ) 𝑣 ) < ( 𝑧 / 2 ) ) ) )
70 30 32 ovresd ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) = ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) )
71 70 breq1d ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ↔ ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( dist ‘ 𝐺 ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) )
72 64 69 71 3imtr4d ( ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) ∧ ( 𝑢 ∈ ( Base ‘ 𝐺 ) ∧ 𝑣 ∈ ( Base ‘ 𝐺 ) ) ) → ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) )
73 72 ralrimivva ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) → ∀ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) )
74 breq2 ( 𝑟 = ( 𝑧 / 2 ) → ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ↔ ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ) )
75 breq2 ( 𝑟 = ( 𝑧 / 2 ) → ( ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ↔ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ) )
76 74 75 anbi12d ( 𝑟 = ( 𝑧 / 2 ) → ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) ↔ ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ) ) )
77 76 imbi1d ( 𝑟 = ( 𝑧 / 2 ) → ( ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) ↔ ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) ) )
78 77 2ralbidv ( 𝑟 = ( 𝑧 / 2 ) → ( ∀ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) ↔ ∀ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) ) )
79 78 rspcev ( ( ( 𝑧 / 2 ) ∈ ℝ+ ∧ ∀ 𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < ( 𝑧 / 2 ) ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < ( 𝑧 / 2 ) ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) ) → ∃ 𝑟 ∈ ℝ+𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) )
80 11 73 79 syl2an2 ( ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) ∧ 𝑧 ∈ ℝ+ ) → ∃ 𝑟 ∈ ℝ+𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) )
81 80 ralrimiva ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) ) → ∀ 𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) )
82 81 ralrimivva ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) )
83 msxms ( 𝐺 ∈ MetSp → 𝐺 ∈ ∞MetSp )
84 eqid ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) = ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) )
85 7 84 xmsxmet ( 𝐺 ∈ ∞MetSp → ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐺 ) ) )
86 4 83 85 3syl ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐺 ) ) )
87 eqid ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) = ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) )
88 87 87 87 txmetcn ( ( ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐺 ) ) ∧ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐺 ) ) ∧ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( ∞Met ‘ ( Base ‘ 𝐺 ) ) ) → ( ( -g𝐺 ) ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) ↔ ( ( -g𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) ) ) )
89 86 86 86 88 syl3anc ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ( ( -g𝐺 ) ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) ↔ ( ( -g𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ∀ 𝑦 ∈ ( Base ‘ 𝐺 ) ∀ 𝑧 ∈ ℝ+𝑟 ∈ ℝ+𝑢 ∈ ( Base ‘ 𝐺 ) ∀ 𝑣 ∈ ( Base ‘ 𝐺 ) ( ( ( 𝑥 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑢 ) < 𝑟 ∧ ( 𝑦 ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝑣 ) < 𝑟 ) → ( ( 𝑥 ( -g𝐺 ) 𝑦 ) ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ( 𝑢 ( -g𝐺 ) 𝑣 ) ) < 𝑧 ) ) ) )
90 10 82 89 mpbir2and ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ( -g𝐺 ) ∈ ( ( ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) )
91 eqid ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ 𝐺 )
92 91 7 84 mstopn ( 𝐺 ∈ MetSp → ( TopOpen ‘ 𝐺 ) = ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) )
93 4 92 syl ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ( TopOpen ‘ 𝐺 ) = ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) )
94 93 93 oveq12d ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) = ( ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) )
95 94 93 oveq12d ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) = ( ( ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ×t ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) Cn ( MetOpen ‘ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) ) )
96 90 95 eleqtrrd ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → ( -g𝐺 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) )
97 91 8 istgp2 ( 𝐺 ∈ TopGrp ↔ ( 𝐺 ∈ Grp ∧ 𝐺 ∈ TopSp ∧ ( -g𝐺 ) ∈ ( ( ( TopOpen ‘ 𝐺 ) ×t ( TopOpen ‘ 𝐺 ) ) Cn ( TopOpen ‘ 𝐺 ) ) ) )
98 2 6 96 97 syl3anbrc ( ( 𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel ) → 𝐺 ∈ TopGrp )