Metamath Proof Explorer


Theorem mstps

Description: A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion mstps ( 𝑀 ∈ MetSp β†’ 𝑀 ∈ TopSp )

Proof

Step Hyp Ref Expression
1 msxms ⊒ ( 𝑀 ∈ MetSp β†’ 𝑀 ∈ ∞MetSp )
2 xmstps ⊒ ( 𝑀 ∈ ∞MetSp β†’ 𝑀 ∈ TopSp )
3 1 2 syl ⊒ ( 𝑀 ∈ MetSp β†’ 𝑀 ∈ TopSp )