Metamath Proof Explorer


Theorem xmstps

Description: An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion xmstps ( 𝑀 ∈ ∞MetSp β†’ 𝑀 ∈ TopSp )

Proof

Step Hyp Ref Expression
1 eqid ⊒ ( TopOpen β€˜ 𝑀 ) = ( TopOpen β€˜ 𝑀 )
2 eqid ⊒ ( Base β€˜ 𝑀 ) = ( Base β€˜ 𝑀 )
3 eqid ⊒ ( ( dist β€˜ 𝑀 ) β†Ύ ( ( Base β€˜ 𝑀 ) Γ— ( Base β€˜ 𝑀 ) ) ) = ( ( dist β€˜ 𝑀 ) β†Ύ ( ( Base β€˜ 𝑀 ) Γ— ( Base β€˜ 𝑀 ) ) )
4 1 2 3 isxms ⊒ ( 𝑀 ∈ ∞MetSp ↔ ( 𝑀 ∈ TopSp ∧ ( TopOpen β€˜ 𝑀 ) = ( MetOpen β€˜ ( ( dist β€˜ 𝑀 ) β†Ύ ( ( Base β€˜ 𝑀 ) Γ— ( Base β€˜ 𝑀 ) ) ) ) ) )
5 4 simplbi ⊒ ( 𝑀 ∈ ∞MetSp β†’ 𝑀 ∈ TopSp )