Step |
Hyp |
Ref |
Expression |
1 |
|
isms.j |
β’ π½ = ( TopOpen β πΎ ) |
2 |
|
isms.x |
β’ π = ( Base β πΎ ) |
3 |
|
isms.d |
β’ π· = ( ( dist β πΎ ) βΎ ( π Γ π ) ) |
4 |
|
fveq2 |
β’ ( π = πΎ β ( TopOpen β π ) = ( TopOpen β πΎ ) ) |
5 |
4 1
|
eqtr4di |
β’ ( π = πΎ β ( TopOpen β π ) = π½ ) |
6 |
|
fveq2 |
β’ ( π = πΎ β ( dist β π ) = ( dist β πΎ ) ) |
7 |
|
fveq2 |
β’ ( π = πΎ β ( Base β π ) = ( Base β πΎ ) ) |
8 |
7 2
|
eqtr4di |
β’ ( π = πΎ β ( Base β π ) = π ) |
9 |
8
|
sqxpeqd |
β’ ( π = πΎ β ( ( Base β π ) Γ ( Base β π ) ) = ( π Γ π ) ) |
10 |
6 9
|
reseq12d |
β’ ( π = πΎ β ( ( dist β π ) βΎ ( ( Base β π ) Γ ( Base β π ) ) ) = ( ( dist β πΎ ) βΎ ( π Γ π ) ) ) |
11 |
10 3
|
eqtr4di |
β’ ( π = πΎ β ( ( dist β π ) βΎ ( ( Base β π ) Γ ( Base β π ) ) ) = π· ) |
12 |
11
|
fveq2d |
β’ ( π = πΎ β ( MetOpen β ( ( dist β π ) βΎ ( ( Base β π ) Γ ( Base β π ) ) ) ) = ( MetOpen β π· ) ) |
13 |
5 12
|
eqeq12d |
β’ ( π = πΎ β ( ( TopOpen β π ) = ( MetOpen β ( ( dist β π ) βΎ ( ( Base β π ) Γ ( Base β π ) ) ) ) β π½ = ( MetOpen β π· ) ) ) |
14 |
|
df-xms |
β’ βMetSp = { π β TopSp β£ ( TopOpen β π ) = ( MetOpen β ( ( dist β π ) βΎ ( ( Base β π ) Γ ( Base β π ) ) ) ) } |
15 |
13 14
|
elrab2 |
β’ ( πΎ β βMetSp β ( πΎ β TopSp β§ π½ = ( MetOpen β π· ) ) ) |