Metamath Proof Explorer


Theorem isxms2

Description: Express the predicate " <. X , D >. is an extended metric space" with underlying set X and distance function D . (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses isms.j ⊒ 𝐽 = ( TopOpen β€˜ 𝐾 )
isms.x ⊒ 𝑋 = ( Base β€˜ 𝐾 )
isms.d ⊒ 𝐷 = ( ( dist β€˜ 𝐾 ) β†Ύ ( 𝑋 Γ— 𝑋 ) )
Assertion isxms2 ( 𝐾 ∈ ∞MetSp ↔ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝐽 = ( MetOpen β€˜ 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 isms.j ⊒ 𝐽 = ( TopOpen β€˜ 𝐾 )
2 isms.x ⊒ 𝑋 = ( Base β€˜ 𝐾 )
3 isms.d ⊒ 𝐷 = ( ( dist β€˜ 𝐾 ) β†Ύ ( 𝑋 Γ— 𝑋 ) )
4 1 2 3 isxms ⊒ ( 𝐾 ∈ ∞MetSp ↔ ( 𝐾 ∈ TopSp ∧ 𝐽 = ( MetOpen β€˜ 𝐷 ) ) )
5 2 1 istps ⊒ ( 𝐾 ∈ TopSp ↔ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) )
6 df-mopn ⊒ MetOpen = ( π‘₯ ∈ βˆͺ ran ∞Met ↦ ( topGen β€˜ ran ( ball β€˜ π‘₯ ) ) )
7 6 dmmptss ⊒ dom MetOpen βŠ† βˆͺ ran ∞Met
8 toponmax ⊒ ( 𝐽 ∈ ( TopOn β€˜ 𝑋 ) β†’ 𝑋 ∈ 𝐽 )
9 8 adantl ⊒ ( ( 𝐽 = ( MetOpen β€˜ 𝐷 ) ∧ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ) β†’ 𝑋 ∈ 𝐽 )
10 simpl ⊒ ( ( 𝐽 = ( MetOpen β€˜ 𝐷 ) ∧ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ) β†’ 𝐽 = ( MetOpen β€˜ 𝐷 ) )
11 9 10 eleqtrd ⊒ ( ( 𝐽 = ( MetOpen β€˜ 𝐷 ) ∧ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ) β†’ 𝑋 ∈ ( MetOpen β€˜ 𝐷 ) )
12 elfvdm ⊒ ( 𝑋 ∈ ( MetOpen β€˜ 𝐷 ) β†’ 𝐷 ∈ dom MetOpen )
13 11 12 syl ⊒ ( ( 𝐽 = ( MetOpen β€˜ 𝐷 ) ∧ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ) β†’ 𝐷 ∈ dom MetOpen )
14 7 13 sselid ⊒ ( ( 𝐽 = ( MetOpen β€˜ 𝐷 ) ∧ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ) β†’ 𝐷 ∈ βˆͺ ran ∞Met )
15 xmetunirn ⊒ ( 𝐷 ∈ βˆͺ ran ∞Met ↔ 𝐷 ∈ ( ∞Met β€˜ dom dom 𝐷 ) )
16 14 15 sylib ⊒ ( ( 𝐽 = ( MetOpen β€˜ 𝐷 ) ∧ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ) β†’ 𝐷 ∈ ( ∞Met β€˜ dom dom 𝐷 ) )
17 eqid ⊒ ( MetOpen β€˜ 𝐷 ) = ( MetOpen β€˜ 𝐷 )
18 17 mopntopon ⊒ ( 𝐷 ∈ ( ∞Met β€˜ dom dom 𝐷 ) β†’ ( MetOpen β€˜ 𝐷 ) ∈ ( TopOn β€˜ dom dom 𝐷 ) )
19 16 18 syl ⊒ ( ( 𝐽 = ( MetOpen β€˜ 𝐷 ) ∧ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ) β†’ ( MetOpen β€˜ 𝐷 ) ∈ ( TopOn β€˜ dom dom 𝐷 ) )
20 10 19 eqeltrd ⊒ ( ( 𝐽 = ( MetOpen β€˜ 𝐷 ) ∧ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ) β†’ 𝐽 ∈ ( TopOn β€˜ dom dom 𝐷 ) )
21 toponuni ⊒ ( 𝐽 ∈ ( TopOn β€˜ dom dom 𝐷 ) β†’ dom dom 𝐷 = βˆͺ 𝐽 )
22 20 21 syl ⊒ ( ( 𝐽 = ( MetOpen β€˜ 𝐷 ) ∧ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ) β†’ dom dom 𝐷 = βˆͺ 𝐽 )
23 toponuni ⊒ ( 𝐽 ∈ ( TopOn β€˜ 𝑋 ) β†’ 𝑋 = βˆͺ 𝐽 )
24 23 adantl ⊒ ( ( 𝐽 = ( MetOpen β€˜ 𝐷 ) ∧ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ) β†’ 𝑋 = βˆͺ 𝐽 )
25 22 24 eqtr4d ⊒ ( ( 𝐽 = ( MetOpen β€˜ 𝐷 ) ∧ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ) β†’ dom dom 𝐷 = 𝑋 )
26 25 fveq2d ⊒ ( ( 𝐽 = ( MetOpen β€˜ 𝐷 ) ∧ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ) β†’ ( ∞Met β€˜ dom dom 𝐷 ) = ( ∞Met β€˜ 𝑋 ) )
27 16 26 eleqtrd ⊒ ( ( 𝐽 = ( MetOpen β€˜ 𝐷 ) ∧ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ) β†’ 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) )
28 27 ex ⊒ ( 𝐽 = ( MetOpen β€˜ 𝐷 ) β†’ ( 𝐽 ∈ ( TopOn β€˜ 𝑋 ) β†’ 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ) )
29 17 mopntopon ⊒ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ ( MetOpen β€˜ 𝐷 ) ∈ ( TopOn β€˜ 𝑋 ) )
30 eleq1 ⊒ ( 𝐽 = ( MetOpen β€˜ 𝐷 ) β†’ ( 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ↔ ( MetOpen β€˜ 𝐷 ) ∈ ( TopOn β€˜ 𝑋 ) ) )
31 29 30 imbitrrid ⊒ ( 𝐽 = ( MetOpen β€˜ 𝐷 ) β†’ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ) )
32 28 31 impbid ⊒ ( 𝐽 = ( MetOpen β€˜ 𝐷 ) β†’ ( 𝐽 ∈ ( TopOn β€˜ 𝑋 ) ↔ 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ) )
33 5 32 bitrid ⊒ ( 𝐽 = ( MetOpen β€˜ 𝐷 ) β†’ ( 𝐾 ∈ TopSp ↔ 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ) )
34 33 pm5.32ri ⊒ ( ( 𝐾 ∈ TopSp ∧ 𝐽 = ( MetOpen β€˜ 𝐷 ) ) ↔ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝐽 = ( MetOpen β€˜ 𝐷 ) ) )
35 4 34 bitri ⊒ ( 𝐾 ∈ ∞MetSp ↔ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) ∧ 𝐽 = ( MetOpen β€˜ 𝐷 ) ) )