Step |
Hyp |
Ref |
Expression |
1 |
|
isms.j |
β’ π½ = ( TopOpen β πΎ ) |
2 |
|
isms.x |
β’ π = ( Base β πΎ ) |
3 |
|
isms.d |
β’ π· = ( ( dist β πΎ ) βΎ ( π Γ π ) ) |
4 |
1 2 3
|
isxms |
β’ ( πΎ β βMetSp β ( πΎ β TopSp β§ π½ = ( MetOpen β π· ) ) ) |
5 |
2 1
|
istps |
β’ ( πΎ β TopSp β π½ β ( TopOn β π ) ) |
6 |
|
df-mopn |
β’ MetOpen = ( π₯ β βͺ ran βMet β¦ ( topGen β ran ( ball β π₯ ) ) ) |
7 |
6
|
dmmptss |
β’ dom MetOpen β βͺ ran βMet |
8 |
|
toponmax |
β’ ( π½ β ( TopOn β π ) β π β π½ ) |
9 |
8
|
adantl |
β’ ( ( π½ = ( MetOpen β π· ) β§ π½ β ( TopOn β π ) ) β π β π½ ) |
10 |
|
simpl |
β’ ( ( π½ = ( MetOpen β π· ) β§ π½ β ( TopOn β π ) ) β π½ = ( MetOpen β π· ) ) |
11 |
9 10
|
eleqtrd |
β’ ( ( π½ = ( MetOpen β π· ) β§ π½ β ( TopOn β π ) ) β π β ( MetOpen β π· ) ) |
12 |
|
elfvdm |
β’ ( π β ( MetOpen β π· ) β π· β dom MetOpen ) |
13 |
11 12
|
syl |
β’ ( ( π½ = ( MetOpen β π· ) β§ π½ β ( TopOn β π ) ) β π· β dom MetOpen ) |
14 |
7 13
|
sselid |
β’ ( ( π½ = ( MetOpen β π· ) β§ π½ β ( TopOn β π ) ) β π· β βͺ ran βMet ) |
15 |
|
xmetunirn |
β’ ( π· β βͺ ran βMet β π· β ( βMet β dom dom π· ) ) |
16 |
14 15
|
sylib |
β’ ( ( π½ = ( MetOpen β π· ) β§ π½ β ( TopOn β π ) ) β π· β ( βMet β dom dom π· ) ) |
17 |
|
eqid |
β’ ( MetOpen β π· ) = ( MetOpen β π· ) |
18 |
17
|
mopntopon |
β’ ( π· β ( βMet β dom dom π· ) β ( MetOpen β π· ) β ( TopOn β dom dom π· ) ) |
19 |
16 18
|
syl |
β’ ( ( π½ = ( MetOpen β π· ) β§ π½ β ( TopOn β π ) ) β ( MetOpen β π· ) β ( TopOn β dom dom π· ) ) |
20 |
10 19
|
eqeltrd |
β’ ( ( π½ = ( MetOpen β π· ) β§ π½ β ( TopOn β π ) ) β π½ β ( TopOn β dom dom π· ) ) |
21 |
|
toponuni |
β’ ( π½ β ( TopOn β dom dom π· ) β dom dom π· = βͺ π½ ) |
22 |
20 21
|
syl |
β’ ( ( π½ = ( MetOpen β π· ) β§ π½ β ( TopOn β π ) ) β dom dom π· = βͺ π½ ) |
23 |
|
toponuni |
β’ ( π½ β ( TopOn β π ) β π = βͺ π½ ) |
24 |
23
|
adantl |
β’ ( ( π½ = ( MetOpen β π· ) β§ π½ β ( TopOn β π ) ) β π = βͺ π½ ) |
25 |
22 24
|
eqtr4d |
β’ ( ( π½ = ( MetOpen β π· ) β§ π½ β ( TopOn β π ) ) β dom dom π· = π ) |
26 |
25
|
fveq2d |
β’ ( ( π½ = ( MetOpen β π· ) β§ π½ β ( TopOn β π ) ) β ( βMet β dom dom π· ) = ( βMet β π ) ) |
27 |
16 26
|
eleqtrd |
β’ ( ( π½ = ( MetOpen β π· ) β§ π½ β ( TopOn β π ) ) β π· β ( βMet β π ) ) |
28 |
27
|
ex |
β’ ( π½ = ( MetOpen β π· ) β ( π½ β ( TopOn β π ) β π· β ( βMet β π ) ) ) |
29 |
17
|
mopntopon |
β’ ( π· β ( βMet β π ) β ( MetOpen β π· ) β ( TopOn β π ) ) |
30 |
|
eleq1 |
β’ ( π½ = ( MetOpen β π· ) β ( π½ β ( TopOn β π ) β ( MetOpen β π· ) β ( TopOn β π ) ) ) |
31 |
29 30
|
imbitrrid |
β’ ( π½ = ( MetOpen β π· ) β ( π· β ( βMet β π ) β π½ β ( TopOn β π ) ) ) |
32 |
28 31
|
impbid |
β’ ( π½ = ( MetOpen β π· ) β ( π½ β ( TopOn β π ) β π· β ( βMet β π ) ) ) |
33 |
5 32
|
bitrid |
β’ ( π½ = ( MetOpen β π· ) β ( πΎ β TopSp β π· β ( βMet β π ) ) ) |
34 |
33
|
pm5.32ri |
β’ ( ( πΎ β TopSp β§ π½ = ( MetOpen β π· ) ) β ( π· β ( βMet β π ) β§ π½ = ( MetOpen β π· ) ) ) |
35 |
4 34
|
bitri |
β’ ( πΎ β βMetSp β ( π· β ( βMet β π ) β§ π½ = ( MetOpen β π· ) ) ) |