| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nlmngp |
|- ( W e. NrmMod -> W e. NrmGrp ) |
| 2 |
|
nlmlmod |
|- ( W e. NrmMod -> W e. LMod ) |
| 3 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
| 4 |
2 3
|
syl |
|- ( W e. NrmMod -> W e. Abel ) |
| 5 |
|
ngptgp |
|- ( ( W e. NrmGrp /\ W e. Abel ) -> W e. TopGrp ) |
| 6 |
1 4 5
|
syl2anc |
|- ( W e. NrmMod -> W e. TopGrp ) |
| 7 |
|
tgptmd |
|- ( W e. TopGrp -> W e. TopMnd ) |
| 8 |
6 7
|
syl |
|- ( W e. NrmMod -> W e. TopMnd ) |
| 9 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
| 10 |
9
|
nlmnrg |
|- ( W e. NrmMod -> ( Scalar ` W ) e. NrmRing ) |
| 11 |
|
nrgtrg |
|- ( ( Scalar ` W ) e. NrmRing -> ( Scalar ` W ) e. TopRing ) |
| 12 |
10 11
|
syl |
|- ( W e. NrmMod -> ( Scalar ` W ) e. TopRing ) |
| 13 |
8 2 12
|
3jca |
|- ( W e. NrmMod -> ( W e. TopMnd /\ W e. LMod /\ ( Scalar ` W ) e. TopRing ) ) |
| 14 |
|
eqid |
|- ( .sf ` W ) = ( .sf ` W ) |
| 15 |
|
eqid |
|- ( TopOpen ` W ) = ( TopOpen ` W ) |
| 16 |
|
eqid |
|- ( TopOpen ` ( Scalar ` W ) ) = ( TopOpen ` ( Scalar ` W ) ) |
| 17 |
9 14 15 16
|
nlmvscn |
|- ( W e. NrmMod -> ( .sf ` W ) e. ( ( ( TopOpen ` ( Scalar ` W ) ) tX ( TopOpen ` W ) ) Cn ( TopOpen ` W ) ) ) |
| 18 |
14 15 9 16
|
istlm |
|- ( W e. TopMod <-> ( ( W e. TopMnd /\ W e. LMod /\ ( Scalar ` W ) e. TopRing ) /\ ( .sf ` W ) e. ( ( ( TopOpen ` ( Scalar ` W ) ) tX ( TopOpen ` W ) ) Cn ( TopOpen ` W ) ) ) ) |
| 19 |
13 17 18
|
sylanbrc |
|- ( W e. NrmMod -> W e. TopMod ) |