| Step |
Hyp |
Ref |
Expression |
| 1 |
|
istlm.s |
|- .x. = ( .sf ` W ) |
| 2 |
|
istlm.j |
|- J = ( TopOpen ` W ) |
| 3 |
|
istlm.f |
|- F = ( Scalar ` W ) |
| 4 |
|
istlm.k |
|- K = ( TopOpen ` F ) |
| 5 |
|
anass |
|- ( ( ( W e. ( TopMnd i^i LMod ) /\ F e. TopRing ) /\ .x. e. ( ( K tX J ) Cn J ) ) <-> ( W e. ( TopMnd i^i LMod ) /\ ( F e. TopRing /\ .x. e. ( ( K tX J ) Cn J ) ) ) ) |
| 6 |
|
df-3an |
|- ( ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) <-> ( ( W e. TopMnd /\ W e. LMod ) /\ F e. TopRing ) ) |
| 7 |
|
elin |
|- ( W e. ( TopMnd i^i LMod ) <-> ( W e. TopMnd /\ W e. LMod ) ) |
| 8 |
7
|
anbi1i |
|- ( ( W e. ( TopMnd i^i LMod ) /\ F e. TopRing ) <-> ( ( W e. TopMnd /\ W e. LMod ) /\ F e. TopRing ) ) |
| 9 |
6 8
|
bitr4i |
|- ( ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) <-> ( W e. ( TopMnd i^i LMod ) /\ F e. TopRing ) ) |
| 10 |
9
|
anbi1i |
|- ( ( ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) /\ .x. e. ( ( K tX J ) Cn J ) ) <-> ( ( W e. ( TopMnd i^i LMod ) /\ F e. TopRing ) /\ .x. e. ( ( K tX J ) Cn J ) ) ) |
| 11 |
|
fveq2 |
|- ( w = W -> ( Scalar ` w ) = ( Scalar ` W ) ) |
| 12 |
11 3
|
eqtr4di |
|- ( w = W -> ( Scalar ` w ) = F ) |
| 13 |
12
|
eleq1d |
|- ( w = W -> ( ( Scalar ` w ) e. TopRing <-> F e. TopRing ) ) |
| 14 |
|
fveq2 |
|- ( w = W -> ( .sf ` w ) = ( .sf ` W ) ) |
| 15 |
14 1
|
eqtr4di |
|- ( w = W -> ( .sf ` w ) = .x. ) |
| 16 |
12
|
fveq2d |
|- ( w = W -> ( TopOpen ` ( Scalar ` w ) ) = ( TopOpen ` F ) ) |
| 17 |
16 4
|
eqtr4di |
|- ( w = W -> ( TopOpen ` ( Scalar ` w ) ) = K ) |
| 18 |
|
fveq2 |
|- ( w = W -> ( TopOpen ` w ) = ( TopOpen ` W ) ) |
| 19 |
18 2
|
eqtr4di |
|- ( w = W -> ( TopOpen ` w ) = J ) |
| 20 |
17 19
|
oveq12d |
|- ( w = W -> ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) = ( K tX J ) ) |
| 21 |
20 19
|
oveq12d |
|- ( w = W -> ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) = ( ( K tX J ) Cn J ) ) |
| 22 |
15 21
|
eleq12d |
|- ( w = W -> ( ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) <-> .x. e. ( ( K tX J ) Cn J ) ) ) |
| 23 |
13 22
|
anbi12d |
|- ( w = W -> ( ( ( Scalar ` w ) e. TopRing /\ ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) ) <-> ( F e. TopRing /\ .x. e. ( ( K tX J ) Cn J ) ) ) ) |
| 24 |
|
df-tlm |
|- TopMod = { w e. ( TopMnd i^i LMod ) | ( ( Scalar ` w ) e. TopRing /\ ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) ) } |
| 25 |
23 24
|
elrab2 |
|- ( W e. TopMod <-> ( W e. ( TopMnd i^i LMod ) /\ ( F e. TopRing /\ .x. e. ( ( K tX J ) Cn J ) ) ) ) |
| 26 |
5 10 25
|
3bitr4ri |
|- ( W e. TopMod <-> ( ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) /\ .x. e. ( ( K tX J ) Cn J ) ) ) |