Description: The scalar multiplication is continuous in a topological module. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istlm.s | |- .x. = ( .sf ` W ) |
|
| istlm.j | |- J = ( TopOpen ` W ) |
||
| istlm.f | |- F = ( Scalar ` W ) |
||
| istlm.k | |- K = ( TopOpen ` F ) |
||
| Assertion | vscacn | |- ( W e. TopMod -> .x. e. ( ( K tX J ) Cn J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istlm.s | |- .x. = ( .sf ` W ) |
|
| 2 | istlm.j | |- J = ( TopOpen ` W ) |
|
| 3 | istlm.f | |- F = ( Scalar ` W ) |
|
| 4 | istlm.k | |- K = ( TopOpen ` F ) |
|
| 5 | 1 2 3 4 | istlm | |- ( W e. TopMod <-> ( ( W e. TopMnd /\ W e. LMod /\ F e. TopRing ) /\ .x. e. ( ( K tX J ) Cn J ) ) ) |
| 6 | 5 | simprbi | |- ( W e. TopMod -> .x. e. ( ( K tX J ) Cn J ) ) |