| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ctlm |
|- TopMod |
| 1 |
|
vw |
|- w |
| 2 |
|
ctmd |
|- TopMnd |
| 3 |
|
clmod |
|- LMod |
| 4 |
2 3
|
cin |
|- ( TopMnd i^i LMod ) |
| 5 |
|
csca |
|- Scalar |
| 6 |
1
|
cv |
|- w |
| 7 |
6 5
|
cfv |
|- ( Scalar ` w ) |
| 8 |
|
ctrg |
|- TopRing |
| 9 |
7 8
|
wcel |
|- ( Scalar ` w ) e. TopRing |
| 10 |
|
cscaf |
|- .sf |
| 11 |
6 10
|
cfv |
|- ( .sf ` w ) |
| 12 |
|
ctopn |
|- TopOpen |
| 13 |
7 12
|
cfv |
|- ( TopOpen ` ( Scalar ` w ) ) |
| 14 |
|
ctx |
|- tX |
| 15 |
6 12
|
cfv |
|- ( TopOpen ` w ) |
| 16 |
13 15 14
|
co |
|- ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) |
| 17 |
|
ccn |
|- Cn |
| 18 |
16 15 17
|
co |
|- ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) |
| 19 |
11 18
|
wcel |
|- ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) |
| 20 |
9 19
|
wa |
|- ( ( Scalar ` w ) e. TopRing /\ ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) ) |
| 21 |
20 1 4
|
crab |
|- { w e. ( TopMnd i^i LMod ) | ( ( Scalar ` w ) e. TopRing /\ ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) ) } |
| 22 |
0 21
|
wceq |
|- TopMod = { w e. ( TopMnd i^i LMod ) | ( ( Scalar ` w ) e. TopRing /\ ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) ) } |