Metamath Proof Explorer


Definition df-tlm

Description: Define a topological left module, which is just what its name suggests: instead of a group over a ring with a scalar product connecting them, it is a topological group over a topological ring with a continuous scalar product. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Assertion df-tlm TopMod=wTopMndLMod|ScalarwTopRing𝑠𝑓wTopOpenScalarw×tTopOpenwCnTopOpenw

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctlm classTopMod
1 vw setvarw
2 ctmd classTopMnd
3 clmod classLMod
4 2 3 cin classTopMndLMod
5 csca classScalar
6 1 cv setvarw
7 6 5 cfv classScalarw
8 ctrg classTopRing
9 7 8 wcel wffScalarwTopRing
10 cscaf class𝑠𝑓
11 6 10 cfv class𝑠𝑓w
12 ctopn classTopOpen
13 7 12 cfv classTopOpenScalarw
14 ctx class×t
15 6 12 cfv classTopOpenw
16 13 15 14 co classTopOpenScalarw×tTopOpenw
17 ccn classCn
18 16 15 17 co classTopOpenScalarw×tTopOpenwCnTopOpenw
19 11 18 wcel wff𝑠𝑓wTopOpenScalarw×tTopOpenwCnTopOpenw
20 9 19 wa wffScalarwTopRing𝑠𝑓wTopOpenScalarw×tTopOpenwCnTopOpenw
21 20 1 4 crab classwTopMndLMod|ScalarwTopRing𝑠𝑓wTopOpenScalarw×tTopOpenwCnTopOpenw
22 0 21 wceq wffTopMod=wTopMndLMod|ScalarwTopRing𝑠𝑓wTopOpenScalarw×tTopOpenwCnTopOpenw