Metamath Proof Explorer


Definition df-tmd

Description: Define the class of all topological monoids. A topological monoid is a monoid whose operation is continuous. (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Assertion df-tmd TopMnd=fMndTopSp|[˙TopOpenf/j]˙+𝑓fj×tjCnj

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctmd classTopMnd
1 vf setvarf
2 cmnd classMnd
3 ctps classTopSp
4 2 3 cin classMndTopSp
5 ctopn classTopOpen
6 1 cv setvarf
7 6 5 cfv classTopOpenf
8 vj setvarj
9 cplusf class+𝑓
10 6 9 cfv class+𝑓f
11 8 cv setvarj
12 ctx class×t
13 11 11 12 co classj×tj
14 ccn classCn
15 13 11 14 co classj×tjCnj
16 10 15 wcel wff+𝑓fj×tjCnj
17 16 8 7 wsbc wff[˙TopOpenf/j]˙+𝑓fj×tjCnj
18 17 1 4 crab classfMndTopSp|[˙TopOpenf/j]˙+𝑓fj×tjCnj
19 0 18 wceq wffTopMnd=fMndTopSp|[˙TopOpenf/j]˙+𝑓fj×tjCnj