| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ctmd |
⊢ TopMnd |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
cmnd |
⊢ Mnd |
| 3 |
|
ctps |
⊢ TopSp |
| 4 |
2 3
|
cin |
⊢ ( Mnd ∩ TopSp ) |
| 5 |
|
ctopn |
⊢ TopOpen |
| 6 |
1
|
cv |
⊢ 𝑓 |
| 7 |
6 5
|
cfv |
⊢ ( TopOpen ‘ 𝑓 ) |
| 8 |
|
vj |
⊢ 𝑗 |
| 9 |
|
cplusf |
⊢ +𝑓 |
| 10 |
6 9
|
cfv |
⊢ ( +𝑓 ‘ 𝑓 ) |
| 11 |
8
|
cv |
⊢ 𝑗 |
| 12 |
|
ctx |
⊢ ×t |
| 13 |
11 11 12
|
co |
⊢ ( 𝑗 ×t 𝑗 ) |
| 14 |
|
ccn |
⊢ Cn |
| 15 |
13 11 14
|
co |
⊢ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) |
| 16 |
10 15
|
wcel |
⊢ ( +𝑓 ‘ 𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) |
| 17 |
16 8 7
|
wsbc |
⊢ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( +𝑓 ‘ 𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) |
| 18 |
17 1 4
|
crab |
⊢ { 𝑓 ∈ ( Mnd ∩ TopSp ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( +𝑓 ‘ 𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) } |
| 19 |
0 18
|
wceq |
⊢ TopMnd = { 𝑓 ∈ ( Mnd ∩ TopSp ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( +𝑓 ‘ 𝑓 ) ∈ ( ( 𝑗 ×t 𝑗 ) Cn 𝑗 ) } |