Metamath Proof Explorer


Definition df-tgp

Description: Define the class of all topological groups. A topological group is a group whose operation and inverse function are continuous. (Contributed by FL, 18-Apr-2010)

Ref Expression
Assertion df-tgp TopGrp = { 𝑓 ∈ ( Grp ∩ TopMnd ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( invg𝑓 ) ∈ ( 𝑗 Cn 𝑗 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctgp TopGrp
1 vf 𝑓
2 cgrp Grp
3 ctmd TopMnd
4 2 3 cin ( Grp ∩ TopMnd )
5 ctopn TopOpen
6 1 cv 𝑓
7 6 5 cfv ( TopOpen ‘ 𝑓 )
8 vj 𝑗
9 cminusg invg
10 6 9 cfv ( invg𝑓 )
11 8 cv 𝑗
12 ccn Cn
13 11 11 12 co ( 𝑗 Cn 𝑗 )
14 10 13 wcel ( invg𝑓 ) ∈ ( 𝑗 Cn 𝑗 )
15 14 8 7 wsbc [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( invg𝑓 ) ∈ ( 𝑗 Cn 𝑗 )
16 15 1 4 crab { 𝑓 ∈ ( Grp ∩ TopMnd ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( invg𝑓 ) ∈ ( 𝑗 Cn 𝑗 ) }
17 0 16 wceq TopGrp = { 𝑓 ∈ ( Grp ∩ TopMnd ) ∣ [ ( TopOpen ‘ 𝑓 ) / 𝑗 ] ( invg𝑓 ) ∈ ( 𝑗 Cn 𝑗 ) }