Metamath Proof Explorer


Definition df-tgp

Description: Define the class of all topological groups. A topological group is a group whose operation and inverse function are continuous. (Contributed by FL, 18-Apr-2010)

Ref Expression
Assertion df-tgp TopGrp=fGrpTopMnd|[˙TopOpenf/j]˙invgfjCnj

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctgp classTopGrp
1 vf setvarf
2 cgrp classGrp
3 ctmd classTopMnd
4 2 3 cin classGrpTopMnd
5 ctopn classTopOpen
6 1 cv setvarf
7 6 5 cfv classTopOpenf
8 vj setvarj
9 cminusg classinvg
10 6 9 cfv classinvgf
11 8 cv setvarj
12 ccn classCn
13 11 11 12 co classjCnj
14 10 13 wcel wffinvgfjCnj
15 14 8 7 wsbc wff[˙TopOpenf/j]˙invgfjCnj
16 15 1 4 crab classfGrpTopMnd|[˙TopOpenf/j]˙invgfjCnj
17 0 16 wceq wffTopGrp=fGrpTopMnd|[˙TopOpenf/j]˙invgfjCnj