Metamath Proof Explorer


Theorem istmd

Description: The predicate "is a topological monoid". (Contributed by Mario Carneiro, 19-Sep-2015)

Ref Expression
Hypotheses istmd.1 F=+𝑓G
istmd.2 J=TopOpenG
Assertion istmd GTopMndGMndGTopSpFJ×tJCnJ

Proof

Step Hyp Ref Expression
1 istmd.1 F=+𝑓G
2 istmd.2 J=TopOpenG
3 elin GMndTopSpGMndGTopSp
4 3 anbi1i GMndTopSpFJ×tJCnJGMndGTopSpFJ×tJCnJ
5 fvexd f=GTopOpenfV
6 simpl f=Gj=TopOpenff=G
7 6 fveq2d f=Gj=TopOpenf+𝑓f=+𝑓G
8 7 1 eqtr4di f=Gj=TopOpenf+𝑓f=F
9 id j=TopOpenfj=TopOpenf
10 fveq2 f=GTopOpenf=TopOpenG
11 10 2 eqtr4di f=GTopOpenf=J
12 9 11 sylan9eqr f=Gj=TopOpenfj=J
13 12 12 oveq12d f=Gj=TopOpenfj×tj=J×tJ
14 13 12 oveq12d f=Gj=TopOpenfj×tjCnj=J×tJCnJ
15 8 14 eleq12d f=Gj=TopOpenf+𝑓fj×tjCnjFJ×tJCnJ
16 5 15 sbcied f=G[˙TopOpenf/j]˙+𝑓fj×tjCnjFJ×tJCnJ
17 df-tmd TopMnd=fMndTopSp|[˙TopOpenf/j]˙+𝑓fj×tjCnj
18 16 17 elrab2 GTopMndGMndTopSpFJ×tJCnJ
19 df-3an GMndGTopSpFJ×tJCnJGMndGTopSpFJ×tJCnJ
20 4 18 19 3bitr4i GTopMndGMndGTopSpFJ×tJCnJ