| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ctlm |
⊢ TopMod |
| 1 |
|
vw |
⊢ 𝑤 |
| 2 |
|
ctmd |
⊢ TopMnd |
| 3 |
|
clmod |
⊢ LMod |
| 4 |
2 3
|
cin |
⊢ ( TopMnd ∩ LMod ) |
| 5 |
|
csca |
⊢ Scalar |
| 6 |
1
|
cv |
⊢ 𝑤 |
| 7 |
6 5
|
cfv |
⊢ ( Scalar ‘ 𝑤 ) |
| 8 |
|
ctrg |
⊢ TopRing |
| 9 |
7 8
|
wcel |
⊢ ( Scalar ‘ 𝑤 ) ∈ TopRing |
| 10 |
|
cscaf |
⊢ ·sf |
| 11 |
6 10
|
cfv |
⊢ ( ·sf ‘ 𝑤 ) |
| 12 |
|
ctopn |
⊢ TopOpen |
| 13 |
7 12
|
cfv |
⊢ ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) |
| 14 |
|
ctx |
⊢ ×t |
| 15 |
6 12
|
cfv |
⊢ ( TopOpen ‘ 𝑤 ) |
| 16 |
13 15 14
|
co |
⊢ ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) |
| 17 |
|
ccn |
⊢ Cn |
| 18 |
16 15 17
|
co |
⊢ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) |
| 19 |
11 18
|
wcel |
⊢ ( ·sf ‘ 𝑤 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) |
| 20 |
9 19
|
wa |
⊢ ( ( Scalar ‘ 𝑤 ) ∈ TopRing ∧ ( ·sf ‘ 𝑤 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) ) |
| 21 |
20 1 4
|
crab |
⊢ { 𝑤 ∈ ( TopMnd ∩ LMod ) ∣ ( ( Scalar ‘ 𝑤 ) ∈ TopRing ∧ ( ·sf ‘ 𝑤 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) ) } |
| 22 |
0 21
|
wceq |
⊢ TopMod = { 𝑤 ∈ ( TopMnd ∩ LMod ) ∣ ( ( Scalar ‘ 𝑤 ) ∈ TopRing ∧ ( ·sf ‘ 𝑤 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) ) } |