Metamath Proof Explorer


Theorem nrgtrg

Description: A normed ring is a topological ring. (Contributed by Mario Carneiro, 4-Oct-2015) (Proof shortened by AV, 31-Oct-2024)

Ref Expression
Assertion nrgtrg R NrmRing R TopRing

Proof

Step Hyp Ref Expression
1 nrgtgp R NrmRing R TopGrp
2 nrgring R NrmRing R Ring
3 eqid mulGrp R = mulGrp R
4 3 ringmgp R Ring mulGrp R Mnd
5 2 4 syl R NrmRing mulGrp R Mnd
6 tgptps R TopGrp R TopSp
7 1 6 syl R NrmRing R TopSp
8 eqid Base R = Base R
9 eqid TopOpen R = TopOpen R
10 8 9 istps R TopSp TopOpen R TopOn Base R
11 7 10 sylib R NrmRing TopOpen R TopOn Base R
12 3 8 mgpbas Base R = Base mulGrp R
13 3 9 mgptopn TopOpen R = TopOpen mulGrp R
14 12 13 istps mulGrp R TopSp TopOpen R TopOn Base R
15 11 14 sylibr R NrmRing mulGrp R TopSp
16 rlmnlm R NrmRing ringLMod R NrmMod
17 rlmsca2 I R = Scalar ringLMod R
18 rlmscaf + 𝑓 mulGrp R = 𝑠𝑓 ringLMod R
19 rlmtopn TopOpen R = TopOpen ringLMod R
20 baseid Base = Slot Base ndx
21 20 8 strfvi Base R = Base I R
22 21 a1i Base R = Base I R
23 tsetid TopSet = Slot TopSet ndx
24 eqid TopSet R = TopSet R
25 23 24 strfvi TopSet R = TopSet I R
26 25 a1i TopSet R = TopSet I R
27 22 26 topnpropd TopOpen R = TopOpen I R
28 27 mptru TopOpen R = TopOpen I R
29 17 18 19 28 nlmvscn ringLMod R NrmMod + 𝑓 mulGrp R TopOpen R × t TopOpen R Cn TopOpen R
30 16 29 syl R NrmRing + 𝑓 mulGrp R TopOpen R × t TopOpen R Cn TopOpen R
31 eqid + 𝑓 mulGrp R = + 𝑓 mulGrp R
32 31 13 istmd mulGrp R TopMnd mulGrp R Mnd mulGrp R TopSp + 𝑓 mulGrp R TopOpen R × t TopOpen R Cn TopOpen R
33 5 15 30 32 syl3anbrc R NrmRing mulGrp R TopMnd
34 3 istrg R TopRing R TopGrp R Ring mulGrp R TopMnd
35 1 2 33 34 syl3anbrc R NrmRing R TopRing