Metamath Proof Explorer


Theorem nrginvrcnlem

Description: Lemma for nrginvrcn . Compare this proof with reccn2 , the elementary proof of continuity of division. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Hypotheses nrginvrcn.x X=BaseR
nrginvrcn.u U=UnitR
nrginvrcn.i I=invrR
nrginvrcn.n N=normR
nrginvrcn.d D=distR
nrginvrcn.r φRNrmRing
nrginvrcn.z φRNzRing
nrginvrcn.a φAU
nrginvrcn.b φB+
nrginvrcn.t T=if1NAB1NABNA2
Assertion nrginvrcnlem φx+yUADy<xIADIy<B

Proof

Step Hyp Ref Expression
1 nrginvrcn.x X=BaseR
2 nrginvrcn.u U=UnitR
3 nrginvrcn.i I=invrR
4 nrginvrcn.n N=normR
5 nrginvrcn.d D=distR
6 nrginvrcn.r φRNrmRing
7 nrginvrcn.z φRNzRing
8 nrginvrcn.a φAU
9 nrginvrcn.b φB+
10 nrginvrcn.t T=if1NAB1NABNA2
11 1rp 1+
12 nrgngp RNrmRingRNrmGrp
13 6 12 syl φRNrmGrp
14 1 2 unitss UX
15 14 8 sselid φAX
16 eqid 0R=0R
17 2 16 nzrunit RNzRingAUA0R
18 7 8 17 syl2anc φA0R
19 1 4 16 nmrpcl RNrmGrpAXA0RNA+
20 13 15 18 19 syl3anc φNA+
21 20 9 rpmulcld φNAB+
22 ifcl 1+NAB+if1NAB1NAB+
23 11 21 22 sylancr φif1NAB1NAB+
24 20 rphalfcld φNA2+
25 23 24 rpmulcld φif1NAB1NABNA2+
26 10 25 eqeltrid φT+
27 13 adantr φyUADy<TRNrmGrp
28 8 adantr φyUADy<TAU
29 1 2 unitcl AUAX
30 28 29 syl φyUADy<TAX
31 1 4 nmcl RNrmGrpAXNA
32 27 30 31 syl2anc φyUADy<TNA
33 32 recnd φyUADy<TNA
34 simprl φyUADy<TyU
35 14 34 sselid φyUADy<TyX
36 1 4 nmcl RNrmGrpyXNy
37 27 35 36 syl2anc φyUADy<TNy
38 37 recnd φyUADy<TNy
39 ngpgrp RNrmGrpRGrp
40 27 39 syl φyUADy<TRGrp
41 nrgring RNrmRingRRing
42 6 41 syl φRRing
43 42 adantr φyUADy<TRRing
44 2 3 1 ringinvcl RRingAUIAX
45 43 28 44 syl2anc φyUADy<TIAX
46 2 3 1 ringinvcl RRingyUIyX
47 43 34 46 syl2anc φyUADy<TIyX
48 eqid -R=-R
49 1 48 grpsubcl RGrpIAXIyXIA-RIyX
50 40 45 47 49 syl3anc φyUADy<TIA-RIyX
51 1 4 nmcl RNrmGrpIA-RIyXNIA-RIy
52 27 50 51 syl2anc φyUADy<TNIA-RIy
53 52 recnd φyUADy<TNIA-RIy
54 33 38 53 mul32d φyUADy<TNANyNIA-RIy=NANIA-RIyNy
55 6 adantr φyUADy<TRNrmRing
56 eqid R=R
57 1 4 56 nmmul RNrmRingAXIA-RIyXNARIA-RIy=NANIA-RIy
58 55 30 50 57 syl3anc φyUADy<TNARIA-RIy=NANIA-RIy
59 1 56 48 43 30 45 47 ringsubdi φyUADy<TARIA-RIy=ARIA-RARIy
60 eqid 1R=1R
61 2 3 56 60 unitrinv RRingAUARIA=1R
62 43 28 61 syl2anc φyUADy<TARIA=1R
63 62 oveq1d φyUADy<TARIA-RARIy=1R-RARIy
64 59 63 eqtrd φyUADy<TARIA-RIy=1R-RARIy
65 64 fveq2d φyUADy<TNARIA-RIy=N1R-RARIy
66 58 65 eqtr3d φyUADy<TNANIA-RIy=N1R-RARIy
67 66 oveq1d φyUADy<TNANIA-RIyNy=N1R-RARIyNy
68 1 60 ringidcl RRing1RX
69 43 68 syl φyUADy<T1RX
70 1 56 ringcl RRingAXIyXARIyX
71 43 30 47 70 syl3anc φyUADy<TARIyX
72 1 48 grpsubcl RGrp1RXARIyX1R-RARIyX
73 40 69 71 72 syl3anc φyUADy<T1R-RARIyX
74 1 4 56 nmmul RNrmRing1R-RARIyXyXN1R-RARIyRy=N1R-RARIyNy
75 55 73 35 74 syl3anc φyUADy<TN1R-RARIyRy=N1R-RARIyNy
76 1 56 48 43 69 71 35 ringsubdir φyUADy<T1R-RARIyRy=1RRy-RARIyRy
77 1 56 60 ringlidm RRingyX1RRy=y
78 43 35 77 syl2anc φyUADy<T1RRy=y
79 1 56 ringass RRingAXIyXyXARIyRy=ARIyRy
80 43 30 47 35 79 syl13anc φyUADy<TARIyRy=ARIyRy
81 2 3 56 60 unitlinv RRingyUIyRy=1R
82 43 34 81 syl2anc φyUADy<TIyRy=1R
83 82 oveq2d φyUADy<TARIyRy=AR1R
84 1 56 60 ringridm RRingAXAR1R=A
85 43 30 84 syl2anc φyUADy<TAR1R=A
86 80 83 85 3eqtrd φyUADy<TARIyRy=A
87 78 86 oveq12d φyUADy<T1RRy-RARIyRy=y-RA
88 76 87 eqtrd φyUADy<T1R-RARIyRy=y-RA
89 88 fveq2d φyUADy<TN1R-RARIyRy=Ny-RA
90 75 89 eqtr3d φyUADy<TN1R-RARIyNy=Ny-RA
91 54 67 90 3eqtrd φyUADy<TNANyNIA-RIy=Ny-RA
92 1 48 grpsubcl RGrpyXAXy-RAX
93 40 35 30 92 syl3anc φyUADy<Ty-RAX
94 1 4 nmcl RNrmGrpy-RAXNy-RA
95 27 93 94 syl2anc φyUADy<TNy-RA
96 95 recnd φyUADy<TNy-RA
97 20 adantr φyUADy<TNA+
98 7 adantr φyUADy<TRNzRing
99 2 16 nzrunit RNzRingyUy0R
100 98 34 99 syl2anc φyUADy<Ty0R
101 1 4 16 nmrpcl RNrmGrpyXy0RNy+
102 27 35 100 101 syl3anc φyUADy<TNy+
103 97 102 rpmulcld φyUADy<TNANy+
104 103 rpred φyUADy<TNANy
105 104 recnd φyUADy<TNANy
106 103 rpne0d φyUADy<TNANy0
107 96 105 53 106 divmuld φyUADy<TNy-RANANy=NIA-RIyNANyNIA-RIy=Ny-RA
108 91 107 mpbird φyUADy<TNy-RANANy=NIA-RIy
109 4 1 48 5 ngpdsr RNrmGrpAXyXADy=Ny-RA
110 27 30 35 109 syl3anc φyUADy<TADy=Ny-RA
111 110 oveq1d φyUADy<TADyNANy=Ny-RANANy
112 4 1 48 5 ngpds RNrmGrpIAXIyXIADIy=NIA-RIy
113 27 45 47 112 syl3anc φyUADy<TIADIy=NIA-RIy
114 108 111 113 3eqtr4rd φyUADy<TIADIy=ADyNANy
115 110 95 eqeltrd φyUADy<TADy
116 26 adantr φyUADy<TT+
117 116 rpred φyUADy<TT
118 9 adantr φyUADy<TB+
119 118 rpred φyUADy<TB
120 104 119 remulcld φyUADy<TNANyB
121 simprr φyUADy<TADy<T
122 21 adantr φyUADy<TNAB+
123 97 rphalfcld φyUADy<TNA2+
124 122 123 rpmulcld φyUADy<TNABNA2+
125 124 rpred φyUADy<TNABNA2
126 1re 1
127 122 rpred φyUADy<TNAB
128 min2 1NABif1NAB1NABNAB
129 126 127 128 sylancr φyUADy<Tif1NAB1NABNAB
130 23 adantr φyUADy<Tif1NAB1NAB+
131 130 rpred φyUADy<Tif1NAB1NAB
132 131 127 123 lemul1d φyUADy<Tif1NAB1NABNABif1NAB1NABNA2NABNA2
133 129 132 mpbid φyUADy<Tif1NAB1NABNA2NABNA2
134 10 133 eqbrtrid φyUADy<TTNABNA2
135 123 rpred φyUADy<TNA2
136 33 2halvesd φyUADy<TNA2+NA2=NA
137 32 37 resubcld φyUADy<TNANy
138 1 4 48 nm2dif RNrmGrpAXyXNANyNA-Ry
139 27 30 35 138 syl3anc φyUADy<TNANyNA-Ry
140 4 1 48 5 ngpds RNrmGrpAXyXADy=NA-Ry
141 27 30 35 140 syl3anc φyUADy<TADy=NA-Ry
142 139 141 breqtrrd φyUADy<TNANyADy
143 min1 1NABif1NAB1NAB1
144 126 127 143 sylancr φyUADy<Tif1NAB1NAB1
145 1red φyUADy<T1
146 131 145 123 lemul1d φyUADy<Tif1NAB1NAB1if1NAB1NABNA21NA2
147 144 146 mpbid φyUADy<Tif1NAB1NABNA21NA2
148 10 147 eqbrtrid φyUADy<TT1NA2
149 135 recnd φyUADy<TNA2
150 149 mullidd φyUADy<T1NA2=NA2
151 148 150 breqtrd φyUADy<TTNA2
152 115 117 135 121 151 ltletrd φyUADy<TADy<NA2
153 137 115 135 142 152 lelttrd φyUADy<TNANy<NA2
154 32 37 135 ltsubadd2d φyUADy<TNANy<NA2NA<Ny+NA2
155 153 154 mpbid φyUADy<TNA<Ny+NA2
156 136 155 eqbrtrd φyUADy<TNA2+NA2<Ny+NA2
157 135 37 135 ltadd1d φyUADy<TNA2<NyNA2+NA2<Ny+NA2
158 156 157 mpbird φyUADy<TNA2<Ny
159 135 37 122 158 ltmul2dd φyUADy<TNABNA2<NABNy
160 119 recnd φyUADy<TB
161 33 38 160 mul32d φyUADy<TNANyB=NABNy
162 159 161 breqtrrd φyUADy<TNABNA2<NANyB
163 117 125 120 134 162 lelttrd φyUADy<TT<NANyB
164 115 117 120 121 163 lttrd φyUADy<TADy<NANyB
165 115 119 103 ltdivmuld φyUADy<TADyNANy<BADy<NANyB
166 164 165 mpbird φyUADy<TADyNANy<B
167 114 166 eqbrtrd φyUADy<TIADIy<B
168 167 expr φyUADy<TIADIy<B
169 168 ralrimiva φyUADy<TIADIy<B
170 breq2 x=TADy<xADy<T
171 170 rspceaimv T+yUADy<TIADIy<Bx+yUADy<xIADIy<B
172 26 169 171 syl2anc φx+yUADy<xIADIy<B