Metamath Proof Explorer


Theorem min1

Description: The minimum of two numbers is less than or equal to the first. (Contributed by NM, 3-Aug-2007)

Ref Expression
Assertion min1 ABifABABA

Proof

Step Hyp Ref Expression
1 rexr AA*
2 rexr BB*
3 xrmin1 A*B*ifABABA
4 1 2 3 syl2an ABifABABA