Metamath Proof Explorer


Theorem min2

Description: The minimum of two numbers is less than or equal to the second. (Contributed by NM, 3-Aug-2007)

Ref Expression
Assertion min2 ABifABABB

Proof

Step Hyp Ref Expression
1 rexr AA*
2 rexr BB*
3 xrmin2 A*B*ifABABB
4 1 2 3 syl2an ABifABABB